Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Kernels] Add fp8 support to reshape_and_cache_flash #6667

Merged
merged 9 commits into from
Jul 24, 2024
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion csrc/cache.h
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,8 @@ void reshape_and_cache_flash(torch::Tensor& key, torch::Tensor& value,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype);
const std::string& kv_cache_dtype,
const double k_scale, const double v_scale);

// Just for unittest
void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
Expand Down
71 changes: 45 additions & 26 deletions csrc/cache_kernels.cu
Original file line number Diff line number Diff line change
Expand Up @@ -203,17 +203,18 @@ __global__ void reshape_and_cache_kernel(
}
}

template <typename scalar_t>
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void reshape_and_cache_flash_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
scalar_t* __restrict__ k_cache, // [num_blocks, block_size, num_heads,
cache_t* __restrict__ key_cache, // [num_blocks, block_size, num_heads,
// head_size]
scalar_t* __restrict__ v_cache, // [num_blocks, block_size, num_heads,
cache_t* __restrict__ value_cache, // [num_blocks, block_size, num_heads,
// head_size]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int block_stride, const int key_stride, const int value_stride,
const int num_heads, const int head_size, const int block_size) {
const int num_heads, const int head_size, const int block_size,
const float k_scale, const float v_scale) {
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
// NOTE: slot_idx can be -1 if the token is padded
Expand All @@ -228,11 +229,20 @@ __global__ void reshape_and_cache_flash_kernel(
const int64_t src_value_idx = token_idx * value_stride + i;
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int64_t tgt_value_idx = block_idx * block_stride +
block_offset * num_heads * head_size +
head_idx * head_size + head_offset;
k_cache[tgt_value_idx] = key[src_key_idx];
v_cache[tgt_value_idx] = value[src_value_idx];
const int64_t tgt_key_value_idx = block_idx * block_stride +
block_offset * num_heads * head_size +
head_idx * head_size + head_offset;
scalar_t tgt_key = key[src_key_idx];
scalar_t tgt_value = value[src_value_idx];
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
key_cache[tgt_key_value_idx] = tgt_key;
value_cache[tgt_key_value_idx] = tgt_value;
} else {
key_cache[tgt_key_value_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_key, k_scale);
value_cache[tgt_key_value_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_value, v_scale);
}
}
}
} // namespace vllm
Expand Down Expand Up @@ -278,40 +288,49 @@ void reshape_and_cache(
CALL_RESHAPE_AND_CACHE)
}

// KV_T is the stored data type of kv-cache.
// CACHE_T is the data type of key and value tensors.
// KV_DTYPE is the real data type of kv-cache.
#define CALL_RESHAPE_AND_CACHE_FLASH(KV_T, CACHE_T, KV_DTYPE) \
vllm::reshape_and_cache_flash_kernel<KV_T, CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(key.data_ptr()), \
reinterpret_cast<KV_T*>(value.data_ptr()), \
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), block_stride, key_stride, \
value_stride, num_heads, head_size, block_size, k_scale, v_scale);

void reshape_and_cache_flash(
torch::Tensor& key, // [num_tokens, num_heads, head_size]
torch::Tensor& value, // [num_tokens, num_heads, head_size]
torch::Tensor& k_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor& v_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor& key, // [num_tokens, num_heads, head_size]
torch::Tensor& value, // [num_tokens, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor&
value_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor& slot_mapping, // [num_tokens]
const std::string& kv_cache_dtype) {
const std::string& kv_cache_dtype, const double k_scale,
const double v_scale) {
// FIXME: only support auto datatype, does not support fp8
if (kv_cache_dtype != "auto") {
TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
}
int num_tokens = key.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);
int block_size = k_cache.size(1);
int block_size = key_cache.size(1);

int key_stride = key.stride(0);
int value_stride = value.stride(0);
int block_stride = k_cache.stride(0);
TORCH_CHECK(k_cache.stride(0) == v_cache.stride(0));
int block_stride = key_cache.stride(0);
TORCH_CHECK(key_cache.stride(0) == value_cache.stride(0));

dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
key.scalar_type(), "reshape_and_cache_flash", [&] {
vllm::reshape_and_cache_flash_kernel<scalar_t>
<<<grid, block, 0, stream>>>(
key.data_ptr<scalar_t>(), value.data_ptr<scalar_t>(),
k_cache.data_ptr<scalar_t>(), v_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int64_t>(), block_stride, key_stride,
value_stride, num_heads, head_size, block_size);
});

DISPATCH_BY_KV_CACHE_DTYPE(key.dtype(), kv_cache_dtype,
CALL_RESHAPE_AND_CACHE_FLASH);
}

namespace vllm {
Expand Down
3 changes: 2 additions & 1 deletion csrc/torch_bindings.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -248,7 +248,8 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
" Tensor! key_cache,"
" Tensor! value_cache,"
" Tensor slot_mapping,"
" str kv_cache_dtype) -> ()");
" str kv_cache_dtype,"
" float k_scale, float v_scale) -> ()");
cache_ops.impl("reshape_and_cache_flash", torch::kCUDA,
&reshape_and_cache_flash);

Expand Down
37 changes: 30 additions & 7 deletions tests/kernels/test_cache.py
Original file line number Diff line number Diff line change
Expand Up @@ -215,8 +215,6 @@ def test_reshape_and_cache_flash(
device: str,
kv_cache_dtype: str,
) -> None:
if kv_cache_dtype == "fp8":
pytest.skip()
random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
Expand Down Expand Up @@ -251,12 +249,27 @@ def test_reshape_and_cache_flash(
key_cache, value_cache = key_caches[0], value_caches[0]

# Clone the KV caches.
cloned_key_cache = key_cache.clone()
cloned_value_cache = value_cache.clone()
if kv_cache_dtype == "fp8":
cloned_key_cache = torch.empty_like(key_cache, dtype=torch.float16)
ops.convert_fp8(cloned_key_cache, key_cache)
cloned_value_cache = torch.empty_like(value_cache, dtype=torch.float16)
ops.convert_fp8(cloned_value_cache, value_cache)
else:
cloned_key_cache = key_cache.clone()
cloned_value_cache = value_cache.clone()

# Using default kv_scale
k_scale = v_scale = 1.0

# Call the reshape_and_cache kernel.
ops.reshape_and_cache_flash(key, value, key_cache, value_cache,
slot_mapping, kv_cache_dtype)
slot_mapping, kv_cache_dtype, k_scale, v_scale)

if kv_cache_dtype == "fp8":
result_key_cache = torch.empty_like(key_cache, dtype=torch.float16)
ops.convert_fp8(result_key_cache, key_cache)
result_value_cache = torch.empty_like(value_cache, dtype=torch.float16)
ops.convert_fp8(result_value_cache, value_cache)

# Run the reference implementation.
block_indicies = torch.div(slot_mapping, block_size, rounding_mode="floor")
Expand All @@ -269,8 +282,18 @@ def test_reshape_and_cache_flash(
cloned_key_cache[block_idx, block_offset, :, :] = key[i]
cloned_value_cache[block_idx, block_offset, :, :] = value[i]

assert torch.allclose(key_cache, cloned_key_cache)
assert torch.allclose(value_cache, cloned_value_cache)
if kv_cache_dtype == "fp8":
assert torch.allclose(result_key_cache,
cloned_key_cache,
atol=0.001,
rtol=0.1)
assert torch.allclose(result_value_cache,
cloned_value_cache,
atol=0.001,
rtol=0.1)
else:
assert torch.allclose(key_cache, cloned_key_cache)
assert torch.allclose(value_cache, cloned_value_cache)


@pytest.mark.parametrize("direction", COPYING_DIRECTION)
Expand Down
5 changes: 4 additions & 1 deletion vllm/_custom_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -426,10 +426,13 @@ def reshape_and_cache_flash(
value_cache: torch.Tensor,
slot_mapping: torch.Tensor,
kv_cache_dtype: str,
k_scale: float,
v_scale: float,
) -> None:
torch.ops._C_cache_ops.reshape_and_cache_flash(key, value, key_cache,
value_cache, slot_mapping,
kv_cache_dtype)
kv_cache_dtype, k_scale,
v_scale)


def copy_blocks(key_caches: List[torch.Tensor],
Expand Down
2 changes: 2 additions & 0 deletions vllm/attention/backends/flash_attn.py
Original file line number Diff line number Diff line change
Expand Up @@ -478,6 +478,8 @@ def forward(
value_cache,
attn_metadata.slot_mapping.flatten(),
self.kv_cache_dtype,
k_scale,
v_scale,
)

num_prefill_tokens = attn_metadata.num_prefill_tokens
Expand Down
2 changes: 2 additions & 0 deletions vllm/attention/backends/flashinfer.py
Original file line number Diff line number Diff line change
Expand Up @@ -489,6 +489,8 @@ def forward(
kv_cache[:, 1],
attn_metadata.slot_mapping.flatten(),
self.kv_cache_dtype,
k_scale,
v_scale,
)

query = query.contiguous(
Expand Down
9 changes: 7 additions & 2 deletions vllm/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -491,7 +491,6 @@ def create_kv_caches_with_random_flash(
seed: int = 0,
device: Optional[str] = "cuda",
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
assert cache_dtype != "fp8"
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
Expand All @@ -507,7 +506,13 @@ def create_kv_caches_with_random_flash(
key_value_cache = torch.empty(size=key_value_cache_shape,
dtype=torch_dtype,
device=device)
key_value_cache.uniform_(-scale, scale)
if cache_dtype in ["auto", "half", "bfloat16", "float"]:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is there no case "auto" becomes fp8?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

besides, handling auto here is a little ugly.. (feel like the caller should convert it alrady) but don't need to handle it here

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I am just following the pattern laid out in the non-flash function

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"auto" now means following the model weights/checkpoints. We should definitely improve the logic in the future.

key_value_cache.uniform_(-scale, scale)
elif cache_dtype == 'fp8':
comaniac marked this conversation as resolved.
Show resolved Hide resolved
_generate_random_fp8(key_value_cache, -scale, scale)
else:
raise ValueError(
f"Does not support key cache of type {cache_dtype}")
key_caches.append(key_value_cache[:, 0])
value_caches.append(key_value_cache[:, 1])
return key_caches, value_caches
Expand Down
Loading