Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add marlin unit tests and marlin benchmark script #4815

Merged
merged 5 commits into from
May 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
183 changes: 183 additions & 0 deletions benchmarks/kernels/benchmark_marlin.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
import argparse

import torch
import torch.utils.benchmark as benchmark
from benchmark_shapes import WEIGHT_SHAPES

from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.gptq_marlin import (
GPTQ_MARLIN_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_SUPPORTED_NUM_BITS)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
MarlinWorkspace, marlin_quantize)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
gptq_pack, quantize_weights, sort_weights)

DEFAULT_MODELS = ["meta-llama/Llama-2-7b-hf/TP1"]
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]

ACT_ORDER_OPTS = [False, True]
K_FULL_OPTS = [False, True]


def bench_run(results, model, act_order, is_k_full, num_bits, group_size,
size_m, size_k, size_n):
label = "Quant Matmul"

sub_label = ("{}, act={} k_full={}, b={}, g={}, "
"MKN=({}x{}x{})".format(model, act_order, is_k_full, num_bits,
group_size, size_m, size_k, size_n))

print(f"Testing: {sub_label}")

a = torch.randn(size_m, size_k).to(torch.half).cuda()
b = torch.rand(size_k, size_n).to(torch.half).cuda()

a_tmp = (torch.zeros(size_m, size_k).to(torch.half).cuda())

# Marlin quant
(
marlin_w_ref,
marlin_q_w,
marlin_s,
marlin_g_idx,
marlin_sort_indices,
marlin_rand_perm,
) = marlin_quantize(b, num_bits, group_size, act_order)

# GPTQ quant
(w_ref, q_w, s, g_idx,
rand_perm) = quantize_weights(b, num_bits, group_size, act_order)
q_w_gptq = gptq_pack(q_w, num_bits, size_k, size_n)

# For act_order, sort the "weights" and "g_idx"
# so that group ids are increasing
repack_sort_indices = torch.empty(0, dtype=torch.int, device=b.device)
if act_order:
(q_w, g_idx, repack_sort_indices) = sort_weights(q_w, g_idx)

# Prepare
marlin_workspace = MarlinWorkspace(size_n)

globals = {
"marlin_w_ref": marlin_w_ref,
"marlin_q_w": marlin_q_w,
"marlin_s": marlin_s,
"marlin_g_idx": marlin_g_idx,
"marlin_sort_indices": marlin_sort_indices,
"marlin_rand_perm": marlin_rand_perm,
"q_w_gptq": q_w_gptq,
"repack_sort_indices": repack_sort_indices,
"num_bits": num_bits,
"group_size": group_size,
"size_m": size_m,
"size_n": size_n,
"size_k": size_k,
"is_k_full": is_k_full,
"a": a,
"a_tmp": a_tmp,
"gptq_marlin_gemm": ops.gptq_marlin_gemm,
"gptq_marlin_repack": ops.gptq_marlin_repack,
"marlin_workspace": marlin_workspace,
}

min_run_time = 1

# Warmup pytorch
for i in range(5):
torch.matmul(a, marlin_w_ref)

results.append(
benchmark.Timer(
stmt="torch.matmul(a, marlin_w_ref)",
globals=globals,
label=label,
sub_label=sub_label,
description="pytorch_gemm",
).blocked_autorange(min_run_time=min_run_time))

results.append(
benchmark.Timer(
stmt=
"output = gptq_marlin_gemm(a, marlin_q_w, marlin_s, marlin_g_idx, marlin_sort_indices, marlin_workspace.scratch, num_bits, size_m, size_n, size_k, is_k_full)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_gemm",
).blocked_autorange(min_run_time=min_run_time))

results.append(
benchmark.Timer(
stmt=
"q_res = gptq_marlin_repack(q_w_gptq, repack_sort_indices, size_k, size_n, num_bits)", # noqa: E501
globals=globals,
label=label,
sub_label=sub_label,
description="gptq_marlin_repack",
).blocked_autorange(min_run_time=min_run_time))


def main(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")

results = []

for model in args.models:
for layer in WEIGHT_SHAPES[model]:
size_k = layer[0]
size_n = layer[1]

if len(args.limit_k) > 0 and size_k not in args.limit_k:
continue

if len(args.limit_n) > 0 and size_n not in args.limit_n:
continue

for act_order in ACT_ORDER_OPTS:
for is_k_full in K_FULL_OPTS:
for num_bits in GPTQ_MARLIN_SUPPORTED_NUM_BITS:
for group_size in GPTQ_MARLIN_SUPPORTED_GROUP_SIZES:
if len(
args.limit_group_size
) > 0 and group_size not in args.limit_group_size:
continue

# For act_order, the group_size must be less than
# size_k
if act_order and (group_size == size_k
or group_size == -1):
continue

for size_m in args.batch_sizes:
bench_run(results, model, act_order, is_k_full,
num_bits, group_size, size_m, size_k,
size_n)

compare = benchmark.Compare(results)
compare.print()


# For quick benchmarking use:
# python benchmark_marlin.py --batch-sizes 1 16 32 --limit-k 4096 --limit-n 4096 --limit-group-size 128 # noqa E501
#
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Benchmark Marlin across specified models/shapes/batches")
parser.add_argument(
"--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys(),
)
parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
parser.add_argument("--limit-k", nargs="+", type=int, default=[])
parser.add_argument("--limit-n", nargs="+", type=int, default=[])
parser.add_argument("--limit-group-size", nargs="+", type=int, default=[])

args = parser.parse_args()
main(args)
75 changes: 75 additions & 0 deletions benchmarks/kernels/benchmark_shapes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
WEIGHT_SHAPES = {
"ideal": [[4 * 256 * 32, 256 * 32]],
"mistralai/Mistral-7B-v0.1/TP1": [
[4096, 6144],
[4096, 4096],
[4096, 28672],
[14336, 4096],
],
"mistralai/Mistral-7B-v0.1/TP2": [
[4096, 3072],
[2048, 4096],
[4096, 14336],
[7168, 4096],
],
"mistralai/Mistral-7B-v0.1/TP4": [
[4096, 1536],
[1024, 4096],
[4096, 7168],
[3584, 4096],
],
"meta-llama/Llama-2-7b-hf/TP1": [
[4096, 12288],
[4096, 4096],
[4096, 22016],
[11008, 4096],
],
"meta-llama/Llama-2-7b-hf/TP2": [
[4096, 6144],
[2048, 4096],
[4096, 11008],
[5504, 4096],
],
"meta-llama/Llama-2-7b-hf/TP4": [
[4096, 3072],
[1024, 4096],
[4096, 5504],
[2752, 4096],
],
"meta-llama/Llama-2-13b-hf/TP1": [
[5120, 15360],
[5120, 5120],
[5120, 27648],
[13824, 5120],
],
"meta-llama/Llama-2-13b-hf/TP2": [
[5120, 7680],
[2560, 5120],
[5120, 13824],
[6912, 5120],
],
"meta-llama/Llama-2-13b-hf/TP4": [
[5120, 3840],
[1280, 5120],
[5120, 6912],
[3456, 5120],
],
"meta-llama/Llama-2-70b-hf/TP1": [
[8192, 10240],
[8192, 8192],
[8192, 57344],
[28672, 8192],
],
"meta-llama/Llama-2-70b-hf/TP2": [
[8192, 5120],
[4096, 8192],
[8192, 28672],
[14336, 8192],
],
"meta-llama/Llama-2-70b-hf/TP4": [
[8192, 2560],
[2048, 8192],
[8192, 14336],
[7168, 8192],
],
}
Loading
Loading