Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ROCm][Hardware][AMD] Use Triton Kernel for default FA on ROCm #3643

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
26 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 14 additions & 0 deletions Dockerfile.rocm
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,9 @@ RUN echo "FA_BRANCH is $FA_BRANCH"
# In that case, we need to use the python reference attention implementation in vllm
ARG BUILD_FA="1"

# whether to build triton on rocm
ARG BUILD_TRITON="1"

# Install some basic utilities
RUN apt-get update && apt-get install python3 python3-pip -y

Expand Down Expand Up @@ -75,6 +78,17 @@ RUN if [ "$BUILD_FA" = "1" ]; then \
RUN if [ "$BASE_IMAGE" = "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1" ]; then \
rm -rf /opt/conda/envs/py_3.9/lib/python3.9/site-packages/numpy-1.20.3.dist-info/; fi

# build triton
RUN if [ "$BUILD_TRITON" = "1" ]; then \
mkdir -p libs \
&& cd libs \
&& pip uninstall -y triton \
&& git clone https://github.com/ROCm/triton.git \
&& cd triton/python \
&& pip3 install . \
&& cd ../..; \
fi

COPY ./ /app/vllm

RUN python3 -m pip install --upgrade pip
Expand Down
348 changes: 348 additions & 0 deletions vllm/attention/backends/rocm_flash_attn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,348 @@
"""Attention layer ROCm GPUs."""
import os
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Type

import torch

from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionMetadata)
from vllm.attention.ops.paged_attn import (PagedAttention,
PagedAttentionMetadata)
from vllm.logger import init_logger

logger = init_logger(__name__)


class ROCmFlashAttentionBackend(AttentionBackend):

@staticmethod
def get_impl_cls() -> Type["ROCmFlashAttentionImpl"]:
return ROCmFlashAttentionImpl

@staticmethod
def make_metadata(*args, **kwargs) -> "ROCmFlashAttentionMetadata":
return ROCmFlashAttentionMetadata(*args, **kwargs)

@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> Tuple[int, ...]:
return PagedAttention.get_kv_cache_shape(num_blocks, block_size,
num_kv_heads, head_size)

@staticmethod
def swap_blocks(
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: Dict[int, int],
) -> None:
PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)

@staticmethod
def copy_blocks(
kv_caches: List[torch.Tensor],
src_to_dists: Dict[int, List[int]],
) -> None:
PagedAttention.copy_blocks(kv_caches, src_to_dists)


@dataclass
class ROCmFlashAttentionMetadata(AttentionMetadata, PagedAttentionMetadata):
"""Metadata for FlashAttentionBackend.

NOTE: Any python object stored here is not updated when it is
cuda-graph replayed. If you have values that need to be changed
dynamically, it should be stored in tensor. The tensor has to be
updated from `CUDAGraphRunner.forward` API.
"""
# Currently, input sequences can only contain all prompts
# or all decoding. True if all sequences are prompts.
is_prompt: bool
# (batch_size,). The prompt length per sequence. None if it is a decoding.
prompt_lens: Optional[List[int]]
# prompt_lens stored as a tensor.
prompt_lens_tensor: Optional[torch.Tensor]
# The number of prompt tokens. Doesn't include padding.
num_prompt_tokens: int
# The number of generation tokens. Doesn't include padding.
num_generation_tokens: int

# NOTE(sang): Definition of context_len, subquery_len, and seqlen.
# |---------- N-1 iteration --------|
# |---------------- N iteration ---------------------|
# |- tokenA -|......................|-- newTokens ---|
# |---------- context_len ----------|
# |-------------------- seqlen ----------------------|
# |- subquery_len -|

# WARNING(sang): context_len has different definition depending on if it is
# prefill vs decoding. When it is prefill, it doesn't include new tokens.
# When it is for decoding, it includes a new token.

# Maximum subquery length in the batch.
max_subquery_len: Optional[int]
# Maximum prompt length in the batch.
max_prompt_len: Optional[int]
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
# the batch, used to index into subquery. E.g., if the subquery length
# is [4, 6], it is [0, 4, 10].
subquery_start_loc: Optional[torch.Tensor]
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
# the batch, used to index into sequence. E.g., if the sequence length is
# [4, 6], it is [0, 4, 10].
seq_start_loc: Optional[torch.Tensor]

# Whether or not if cuda graph is enabled.
# Cuda-graph is currently enabled for decoding only.
# TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
use_cuda_graph: bool


class ROCmFlashAttentionImpl(AttentionImpl):
"""
If the input tensors contain prompt tokens, the layout is as follows:
|<--------------- num_prompt_tokens -------------->|
|<--prompt_0-->|<--prompt_1-->|...|<--prompt_N-1-->|

Otherwise, the layout is as follows:
|<------------------ num_generation_tokens (M) ----------------->|
|<--generation_0-->|..........|<--generation_M-1-->|<--padding-->|

Generation tokens can contain padding when cuda-graph is used.
Currently, prompt tokens don't contain any padding.

The prompts might have different lengths, while the generation tokens
always have length 1.
"""

def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: Optional[int] = None,
alibi_slopes: Optional[List[float]] = None,
sliding_window: Optional[int] = None,
) -> None:
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
self.sliding_window = ((sliding_window, sliding_window)
if sliding_window is not None else (-1, -1))
if alibi_slopes is not None:
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
self.alibi_slopes = alibi_slopes

assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads

suppored_head_sizes = PagedAttention.get_supported_head_sizes()
if head_size not in suppored_head_sizes:
raise ValueError(
f"Head size {head_size} is not supported by PagedAttention. "
f"Supported head sizes are: {suppored_head_sizes}.")

self.use_naive_attn = torch.cuda.get_device_capability()[0] != 9
# NOTE: Allow for switching between Triton and CK. Defaulting to triton.
self.use_triton_flash_attn = (os.environ.get(
"VLLM_USE_TRITON_FLASH_ATTN", "True").lower() in ("true", "1"))
if self.use_naive_attn:
# AMD Radeon 7900 series (gfx1100) currently does not support
# xFormers nor FlashAttention. As a temporary workaround, we use
# naive PyTorch implementation of attention.
self.attn_fuc = _naive_attention()
logger.debug("Using naive attention in ROCmBackend")
elif self.use_triton_flash_attn:
from vllm.attention.ops.triton_flash_attention import ( # noqa: F401
triton_attention)
self.attn_func = triton_attention
logger.debug("Using Triton FA in ROCmBackend")
else:
from flash_attn import flash_attn_varlen_func # noqa: F401
self.attn_func = flash_attn_varlen_func
logger.debug("Using CK FA in ROCmBackend")

def repeat_kv(self, x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=1, repeats=n_rep)"""
tokens, n_kv_heads, head_dim = x.shape
return (x[:, :,
None, :].expand(tokens, n_kv_heads, n_rep,
head_dim).reshape(tokens, n_kv_heads * n_rep,
head_dim))

def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: ROCmFlashAttentionMetadata,
kv_scale: float = 1.0,
) -> torch.Tensor:
"""Forward pass with FlashAttention and PagedAttention.

Args:
query: shape = [num_tokens, num_heads * head_size]
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
"""
num_tokens, hidden_size = query.shape
# Reshape the query, key, and value tensors.
query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)

if kv_cache is not None:
key_cache, value_cache = PagedAttention.split_kv_cache(
kv_cache, self.num_kv_heads, self.head_size)

# Reshape the input keys and values and store them in the cache.
# If kv_cache is not provided, the new key and value tensors are
# not cached. This happens during the initial memory profiling run.
PagedAttention.write_to_paged_cache(
key,
value,
key_cache,
value_cache,
attn_metadata.slot_mapping,
attn_metadata.kv_cache_dtype,
kv_scale,
)

if attn_metadata.is_prompt:
# Prompt run.
if kv_cache is None or attn_metadata.block_tables.numel() == 0:
# triton attention
# When block_tables are not filled, it means q and k are the
# prompt, and they have the same length.
if self.use_naive_attn or self.use_triton_flash_attn:
if self.num_kv_heads != self.num_heads:
# Interleave for MQA workaround.
key = self.repeat_kv(key, self.num_queries_per_kv)
value = self.repeat_kv(value, self.num_queries_per_kv)
if self.use_naive_attn:
output = self.attn_fuc(
query,
key,
value,
attn_metadata.prompt_lens,
self.scale,
)
else:
output, _ = self.attn_func(
query,
key,
value,
None,
attn_metadata.seq_start_loc,
attn_metadata.seq_start_loc,
attn_metadata.max_prompt_len,
attn_metadata.max_prompt_len,
True,
self.scale,
)
else:
output = self.attn_func(
q=query,
k=key,
v=value,
cu_seqlens_q=attn_metadata.seq_start_loc,
cu_seqlens_k=attn_metadata.seq_start_loc,
max_seqlen_q=attn_metadata.max_prompt_len,
max_seqlen_k=attn_metadata.max_prompt_len,
softmax_scale=self.scale,
causal=True,
)

else:
# prefix-enabled attention
output = PagedAttention.forward_prefix(
query,
key,
value,
key_cache,
value_cache,
attn_metadata.block_tables,
attn_metadata.subquery_start_loc,
attn_metadata.prompt_lens_tensor,
attn_metadata.context_lens,
attn_metadata.max_subquery_len,
self.alibi_slopes,
)
else:
# Decoding run.
output = PagedAttention.forward_decode(
query,
key_cache,
value_cache,
attn_metadata.block_tables,
attn_metadata.context_lens,
attn_metadata.max_context_len,
attn_metadata.kv_cache_dtype,
self.num_kv_heads,
self.scale,
self.alibi_slopes,
kv_scale,
)

# Reshape the output tensor.
return output.view(num_tokens, hidden_size)


def _naive_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
prompt_lens: List[int],
scale: float,
) -> torch.Tensor:
num_tokens = query.shape[0]
output = torch.empty_like(query)
start = 0
for _, prompt_len in enumerate(prompt_lens):
end = start + prompt_len
out = _naive_masked_attention(
query[None, start:end],
key[None, start:end],
value[None, start:end],
scale,
)
# TODO(woosuk): Unnecessary copy. Optimize.
output[start:end].copy_(out)
start += prompt_len

# Using view got RuntimeError: view size is not compatible
# with input tensor's size and stride (at least one
# dimension spans across two contiguous subspaces).
# Use reshape instead.
return output.reshape(num_tokens, -1)


def _naive_masked_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
scale: float,
) -> torch.Tensor:
seq_len, _, _ = query.shape
attn_mask = torch.triu(torch.ones(seq_len,
seq_len,
dtype=query.dtype,
device=query.device),
diagonal=1)
attn_mask = attn_mask * torch.finfo(query.dtype).min

attn_weights = scale * torch.einsum("qhd,khd->hqk", query, key).float()
attn_weights = attn_weights + attn_mask.float()
attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype)
out = torch.einsum("hqk,khd->qhd", attn_weights, value)
return out
Loading
Loading