Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Misc] Define from_dict and to_dict in InputMetadata #3452

Merged
merged 7 commits into from
Mar 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@
import io
import os
import re
import shutil
import subprocess
import warnings
from pathlib import Path
Expand Down
49 changes: 14 additions & 35 deletions vllm/model_executor/input_metadata.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
from dataclasses import dataclass
from typing import Optional

import torch


@dataclass
class InputMetadata:
"""Metadata for input sequences. Used in PagedAttention.

Expand All @@ -15,40 +17,17 @@ class InputMetadata:
kv_cache_dtype: Data type to store kv cache.
"""

def __init__(
self,
is_prompt: bool,
slot_mapping: torch.Tensor,
prompt_lens: Optional[torch.Tensor],
max_seq_len: Optional[int],
start_loc: Optional[torch.Tensor],
max_context_len: Optional[int],
context_lens: Optional[torch.Tensor],
block_tables: Optional[torch.Tensor],
use_cuda_graph: bool,
kv_cache_dtype: str,
) -> None:
self.is_prompt = is_prompt
self.prompt_lens = prompt_lens
self.max_seq_len = max_seq_len
self.start_loc = start_loc
self.max_context_len = max_context_len
self.slot_mapping = slot_mapping
self.context_lens = context_lens
self.block_tables = block_tables
self.use_cuda_graph = use_cuda_graph
self.kv_cache_dtype = kv_cache_dtype
is_prompt: bool
slot_mapping: torch.Tensor
prompt_lens: Optional[torch.Tensor]
max_seq_len: Optional[int]
start_loc: Optional[torch.Tensor]
max_context_len: Optional[int]
context_lens: Optional[torch.Tensor]
block_tables: Optional[torch.Tensor]
use_cuda_graph: bool
kv_cache_dtype: str

# Set during the execution of the first attention op.
# FIXME(woosuk): This is a hack.
def __post_init__(self):
# will not appear in the __repr__ and __init__
self.attn_bias = None

def __repr__(self) -> str:
return ("InputMetadata("
f"is_prompt={self.is_prompt}, "
f"max_context_len={self.max_context_len}, "
f"slot_mapping={self.slot_mapping}, "
f"context_lens={self.context_lens}, "
f"block_tables={self.block_tables}, "
f"use_cuda_graph={self.use_cuda_graph}, "
f"kv_cache_dtype={self.kv_cache_dtype})")
37 changes: 10 additions & 27 deletions vllm/worker/model_runner.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import contextlib
import dataclasses
import time
from typing import Dict, List, Optional, Tuple, Set, Union

Expand Down Expand Up @@ -521,45 +522,27 @@ def prepare_input_tensors(
metadata_dict = {
"input_tokens": input_tokens,
"input_positions": input_positions,
"is_prompt": input_metadata.is_prompt,
"slot_mapping": input_metadata.slot_mapping,
"prompt_lens": input_metadata.prompt_lens,
"max_seq_len": input_metadata.max_seq_len,
"start_loc": input_metadata.start_loc,
"max_context_len": input_metadata.max_context_len,
"context_lens": input_metadata.context_lens,
"block_tables": input_metadata.block_tables,
"use_cuda_graph": input_metadata.use_cuda_graph,
"kv_cache_dtype": input_metadata.kv_cache_dtype,
"selected_token_indices":
sampling_metadata.selected_token_indices,
"lora_requests": lora_requests,
"lora_mapping": lora_mapping,
}
metadata_dict.update(dataclasses.asdict(input_metadata))
broadcast_tensor_dict(metadata_dict, src=0)
else:
metadata_dict = broadcast_tensor_dict(src=0)
input_tokens = metadata_dict["input_tokens"]
input_positions = metadata_dict["input_positions"]
lora_mapping = metadata_dict["lora_mapping"]
lora_requests = metadata_dict["lora_requests"]
input_metadata = InputMetadata(
is_prompt=metadata_dict["is_prompt"],
slot_mapping=metadata_dict["slot_mapping"],
prompt_lens=metadata_dict["prompt_lens"],
max_seq_len=metadata_dict["max_seq_len"],
start_loc=metadata_dict["start_loc"],
max_context_len=metadata_dict["max_context_len"],
context_lens=metadata_dict["context_lens"],
block_tables=metadata_dict["block_tables"],
use_cuda_graph=metadata_dict["use_cuda_graph"],
kv_cache_dtype=metadata_dict["kv_cache_dtype"],
)
input_tokens = metadata_dict.pop("input_tokens")
input_positions = metadata_dict.pop("input_positions")
selected_token_indices = metadata_dict.pop(
"selected_token_indices")
lora_mapping = metadata_dict.pop("lora_mapping")
lora_requests = metadata_dict.pop("lora_requests")
input_metadata = InputMetadata(**metadata_dict)
sampling_metadata = SamplingMetadata(
seq_groups=None,
seq_data=None,
prompt_lens=None,
selected_token_indices=metadata_dict["selected_token_indices"],
selected_token_indices=selected_token_indices,
categorized_sample_indices=None,
generators=None,
perform_sampling=False,
Expand Down
Loading