Skip to content

Commit

Permalink
[Model] FalconMamba Support (#9325)
Browse files Browse the repository at this point in the history
  • Loading branch information
dhiaEddineRhaiem authored Oct 21, 2024
1 parent 496e991 commit f6b9729
Show file tree
Hide file tree
Showing 5 changed files with 35 additions and 12 deletions.
5 changes: 5 additions & 0 deletions docs/source/models/supported_models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -87,6 +87,11 @@ Text Generation
- :code:`tiiuae/falcon-7b`, :code:`tiiuae/falcon-40b`, :code:`tiiuae/falcon-rw-7b`, etc.
-
- ✅︎
* - :code:`FalconMambaForCausalLM`
- FalconMamba
- :code:`tiiuae/falcon-mamba-7b`, :code:`tiiuae/falcon-mamba-7b-instruct`, etc.
- ✅︎
-
* - :code:`GemmaForCausalLM`
- Gemma
- :code:`google/gemma-2b`, :code:`google/gemma-7b`, etc.
Expand Down
2 changes: 1 addition & 1 deletion tests/models/decoder_only/language/test_mamba.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@

from ...utils import check_outputs_equal

MODELS = ["state-spaces/mamba-130m-hf"]
MODELS = ["state-spaces/mamba-130m-hf", "tiiuae/falcon-mamba-tiny-dev"]


# Use lower-level interfaces to create this greedy generator, as mamba will
Expand Down
1 change: 0 additions & 1 deletion vllm/model_executor/layers/layernorm.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,6 @@ def __init__(
self.variance_epsilon = eps
self.variance_size_override = (None if var_hidden_size == hidden_size
else var_hidden_size)

self.weight = nn.Parameter(torch.ones(hidden_size))

def forward_native(
Expand Down
38 changes: 28 additions & 10 deletions vllm/model_executor/models/mamba.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
QuantizationConfig)
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
composed_weight_loader, default_weight_loader, sharded_weight_loader)
from vllm.model_executor.models.interfaces import (HasInnerState,
Expand Down Expand Up @@ -59,7 +59,7 @@ def __init__(self, config: MambaConfig, layer_idx):
self.conv_kernel_size = config.conv_kernel
self.intermediate_size = config.intermediate_size
self.time_step_rank = int(config.time_step_rank)

self.is_falcon_mamba = config.model_type == "falcon_mamba"
self.conv1d = ColumnParallelLinear(
input_size=self.conv_kernel_size,
output_size=self.intermediate_size,
Expand Down Expand Up @@ -109,6 +109,13 @@ def __init__(self, config: MambaConfig, layer_idx):
input_is_parallel=True,
)
self.activation = config.hidden_act
if self.is_falcon_mamba:
self.dt_layernorm = RMSNorm(self.time_step_rank,
eps=config.mixer_rms_eps)
self.b_layernorm = RMSNorm(self.ssm_state_size,
eps=config.mixer_rms_eps)
self.c_layernorm = RMSNorm(self.ssm_state_size,
eps=config.mixer_rms_eps)

def forward(self, hidden_states: torch.Tensor,
attn_metadata: AttentionMetadata,
Expand Down Expand Up @@ -158,8 +165,12 @@ def forward(self, hidden_states: torch.Tensor,
[self.time_step_rank, self.ssm_state_size, self.ssm_state_size],
dim=-1,
)

# Note that Jamba normalizes B, C, and time_step here but Mamba doesn't.
# Note that Jamba and FalconMamba normalizes B, C, and time_step here
# but Mamba doesn't.
if self.is_falcon_mamba:
time_step = self.dt_layernorm(time_step.contiguous())
B = self.b_layernorm(B.contiguous())
C = self.c_layernorm(C.contiguous())

discrete_time_step = self.dt_proj(time_step)[0].transpose(-2, -1)
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
Expand Down Expand Up @@ -213,11 +224,9 @@ def __init__(self,
super().__init__()
self.layer_idx = layer_idx
self.config = config
self.is_falcon_mamba = config.model_type == "falcon_mamba"
self.mixer = MambaMixer(config, layer_idx)

self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.pre_ff_layernorm = RMSNorm(config.hidden_size,
eps=config.layer_norm_epsilon)

def forward(
self,
Expand Down Expand Up @@ -319,8 +328,18 @@ def __init__(
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size

self.lm_head = self.backbone.embeddings
if config.tie_word_embeddings:
self.lm_head = self.backbone.embeddings
else:
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config else lora_config.lora_vocab_padding_size,
)

# Used to track and store by the Mamba cache between steps.
self.mamba_cache: Optional[MambaCacheManager] = None
Expand Down Expand Up @@ -398,7 +417,6 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
for name, loaded_weight in weights:
if "A_log" in name:
name = name.replace("A_log", "A")

# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
Expand Down
1 change: 1 addition & 0 deletions vllm/model_executor/models/registry.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@
# For decapoda-research/llama-*
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),
"MambaForCausalLM": ("mamba", "MambaForCausalLM"),
"FalconMambaForCausalLM": ("mamba", "MambaForCausalLM"),
"MistralForCausalLM": ("llama", "LlamaForCausalLM"),
"MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"),
"QuantMixtralForCausalLM": ("mixtral_quant", "MixtralForCausalLM"),
Expand Down

0 comments on commit f6b9729

Please sign in to comment.