-
-
Notifications
You must be signed in to change notification settings - Fork 4.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Speculative decoding] Add ngram prompt lookup decoding
Algo details could refer to this blog post: https://huggingface.co/blog/assisted-generation Code directly refer to transformers's current implementation. huggingface/transformers#27775 Since we directly get draft from prompt, there is no need another model or modified model to get the proposal, it would be the most convenient way to enjoy the speedup of speculation.
- Loading branch information
Showing
14 changed files
with
1,063 additions
and
278 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,285 @@ | ||
"""The tests in this file verify end-to-end speculative decoding correctness. | ||
This docstring details important information on the testing methodology. | ||
Most of the tests rely on "greedy equality", where we expect the output of | ||
speculative decoding on a sequence to exactly match the output of normal non- | ||
speculative decoding. | ||
Since speculative decoding with rejection sampling guarantees that the output | ||
distribution matches the target model's output distribution (up to hardware | ||
numerics, see https://arxiv.org/pdf/2302.01318.pdf), we can expect greedy | ||
equality. | ||
For ngram lookup, its idea comes from https://github.com/apoorvumang/prompt-lookup-decoding, | ||
and is merged into transform code base: https://github.com/huggingface/transformers/pull/27775. | ||
Since there is no model is needed for generate the proposal, we could make | ||
the testcase much simplier than drafter multi-step one. | ||
However, we still need to verify below scenario could be passed: | ||
* Batch size 1 greedy equality | ||
* Batch size >1 greedy equality | ||
* Test greedy equality under preemption | ||
* Test greedy equality under various ngram sizes / speculative sizes | ||
With those tests, we can say at least, ngram spec would not break the correctess | ||
for the target model outputs. | ||
""" | ||
|
||
from itertools import cycle | ||
|
||
import pytest | ||
|
||
from vllm import SamplingParams | ||
|
||
from .conftest import get_output_from_llm_generator | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"common_llm_kwargs", | ||
[{ | ||
# Skip cuda graph recording for fast test. | ||
"enforce_eager": True, | ||
# Required for spec decode. | ||
"use_v2_block_manager": True, | ||
# Print spec metrics. | ||
"disable_log_stats": False, | ||
}]) | ||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [ | ||
{ | ||
"model": "JackFram/llama-68m", | ||
}, | ||
]) | ||
@pytest.mark.parametrize("baseline_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize("test_llm_kwargs", [ | ||
{ | ||
"speculative_model": "[ngram]", | ||
"num_speculative_tokens": 5, | ||
"ngram_prompt_lookup_max": 3, | ||
}, | ||
]) | ||
@pytest.mark.parametrize( | ||
"output_len", | ||
[ | ||
# Use long output len for the small model test. | ||
1536, | ||
]) | ||
@pytest.mark.parametrize("batch_size", [1]) | ||
@pytest.mark.parametrize("seed", [1]) | ||
def test_spec_decode_e2e_greedy_correctness_tiny_model_bs1( | ||
baseline_llm_generator, test_llm_generator, batch_size: int, | ||
output_len: int): | ||
"""Verify greedy equality on a tiny model with batch size of one. | ||
Since this test is cheaper than other e2e correctness tests, we generate | ||
with a higher output_len. | ||
""" | ||
run_greedy_equality_correctness_test(baseline_llm_generator, | ||
test_llm_generator, | ||
batch_size, | ||
max_output_len=output_len, | ||
force_output_len=True) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"common_llm_kwargs", | ||
[{ | ||
# Skip cuda graph recording for fast test. | ||
"enforce_eager": True, | ||
# Required for spec decode. | ||
"use_v2_block_manager": True, | ||
# Print spec metrics. | ||
"disable_log_stats": False, | ||
}]) | ||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [ | ||
{ | ||
"model": "JackFram/llama-68m", | ||
}, | ||
]) | ||
@pytest.mark.parametrize("baseline_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize("test_llm_kwargs", [ | ||
{ | ||
"speculative_model": "[ngram]", | ||
"num_speculative_tokens": 5, | ||
"ngram_prompt_lookup_max": 3, | ||
}, | ||
]) | ||
@pytest.mark.parametrize( | ||
"output_len", | ||
[ | ||
# Use small output len for fast test. | ||
256, | ||
]) | ||
@pytest.mark.parametrize("batch_size", [64]) | ||
@pytest.mark.parametrize("seed", [1]) | ||
def test_spec_decode_e2e_greedy_correctness_tiny_model_large_bs( | ||
baseline_llm_generator, test_llm_generator, batch_size: int, | ||
output_len: int): | ||
"""Verify greedy equality on a tiny model and large batch size. | ||
""" | ||
run_greedy_equality_correctness_test(baseline_llm_generator, | ||
test_llm_generator, | ||
batch_size, | ||
max_output_len=output_len, | ||
force_output_len=True) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"common_llm_kwargs", | ||
[{ | ||
"block_size": 8, | ||
# 2 for small prompt, 256//8 for generated. | ||
"num_gpu_blocks_override": 2 + 256 // 8, | ||
"max_model_len": (2 + 256 // 8) * 8, | ||
# Skip cuda graph recording for fast test. | ||
"enforce_eager": True, | ||
# Required for spec decode. | ||
"use_v2_block_manager": True | ||
}]) | ||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [ | ||
{ | ||
"model": "JackFram/llama-160m", | ||
}, | ||
]) | ||
@pytest.mark.parametrize("baseline_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize("test_llm_kwargs", [ | ||
{ | ||
"speculative_model": "[ngram]", | ||
"num_speculative_tokens": 5, | ||
"ngram_prompt_lookup_max": 3, | ||
}, | ||
]) | ||
@pytest.mark.parametrize( | ||
"output_len", | ||
[ | ||
# Use small output len for fast test. | ||
256, | ||
]) | ||
@pytest.mark.parametrize("batch_size", [4]) | ||
@pytest.mark.parametrize("seed", [1]) | ||
def test_spec_decode_e2e_greedy_correctness_with_preemption( | ||
baseline_llm_generator, test_llm_generator, batch_size: int, | ||
output_len: int): | ||
"""Verify greedy equality, even when some sequences are preempted mid- | ||
generation. | ||
""" | ||
run_greedy_equality_correctness_test(baseline_llm_generator, | ||
test_llm_generator, | ||
batch_size, | ||
max_output_len=output_len, | ||
force_output_len=True) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"common_llm_kwargs", | ||
[{ | ||
"model": "JackFram/llama-68m", | ||
# Skip cuda graph recording for fast test. | ||
"enforce_eager": True, | ||
# Required for spec decode. | ||
"use_v2_block_manager": True | ||
}]) | ||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize("baseline_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize( | ||
"test_llm_kwargs", | ||
[ | ||
{ | ||
"speculative_model": "[ngram]", | ||
"num_speculative_tokens": k, | ||
"ngram_prompt_lookup_max": 3, | ||
} | ||
# Try a range of common k, as well as large speculation. | ||
for k in [1, 2, 3, 4, 5, 6, 7, 8, 9, 63] | ||
] + [ | ||
{ | ||
"speculative_model": "[ngram]", | ||
"num_speculative_tokens": k, | ||
"ngram_prompt_lookup_max": 1, | ||
} | ||
# Try a range of common k, as well as large speculation. | ||
for k in [1, 2, 3, 4, 5, 6, 7, 8, 9, 63] | ||
]) | ||
@pytest.mark.parametrize("batch_size", [2]) | ||
@pytest.mark.parametrize( | ||
"output_len", | ||
[ | ||
# Use smaller output len for fast test. | ||
32, | ||
]) | ||
@pytest.mark.parametrize("seed", [1]) | ||
def test_many_k(baseline_llm_generator, test_llm_generator, batch_size: int, | ||
output_len: int): | ||
"""Verify that speculative decoding produces exact equality to without spec | ||
decode with many different values of k. | ||
""" | ||
run_greedy_equality_correctness_test(baseline_llm_generator, | ||
test_llm_generator, | ||
batch_size, | ||
max_output_len=output_len, | ||
force_output_len=True) | ||
|
||
|
||
def run_greedy_equality_correctness_test(baseline_llm_generator, | ||
test_llm_generator, | ||
batch_size, | ||
max_output_len, | ||
force_output_len: bool, | ||
print_tokens: bool = False): | ||
"""Helper method that compares the outputs of both the baseline LLM and | ||
the test LLM. It asserts greedy equality, e.g. that the outputs are exactly | ||
the same when temperature is zero. | ||
""" | ||
temperature = 0.0 | ||
|
||
prompts = [ | ||
"Hello, my name is", | ||
"The president of the United States is", | ||
"The capital of France is", | ||
"The future of AI is", | ||
"San Francisco is know for its", | ||
"Facebook was created in 2004 by", | ||
"Curious George is a", | ||
"Python 3.11 brings improvements to its", | ||
] | ||
|
||
prompts = [prompt for prompt, _ in zip(cycle(prompts), range(batch_size))] | ||
|
||
# If the test requires that we generated max_output_len tokens, then set the | ||
# sampling params to ignore eos token. | ||
ignore_eos = force_output_len | ||
|
||
sampling_params = SamplingParams( | ||
max_tokens=max_output_len, | ||
ignore_eos=ignore_eos, | ||
temperature=temperature, | ||
) | ||
|
||
spec_batch_tokens, spec_batch_token_ids = get_output_from_llm_generator( | ||
test_llm_generator, prompts, sampling_params) | ||
|
||
(baseline_batch_tokens, | ||
baseline_batch_token_ids) = get_output_from_llm_generator( | ||
baseline_llm_generator, prompts, sampling_params) | ||
|
||
assert len(baseline_batch_token_ids) == len(prompts) | ||
assert len(spec_batch_token_ids) == len(prompts) | ||
|
||
for i, (baseline_token_ids, baseline_tokens, spec_token_ids, | ||
spec_tokens) in enumerate( | ||
zip(baseline_batch_token_ids, baseline_batch_tokens, | ||
spec_batch_token_ids, spec_batch_tokens)): | ||
if print_tokens: | ||
print(f'{i=} {baseline_tokens=}') | ||
print(f'{i=} {spec_tokens=}') | ||
print(f'{i=} {baseline_token_ids=}') | ||
print(f'{i=} {spec_token_ids=}') | ||
assert baseline_token_ids == spec_token_ids |
Oops, something went wrong.