-
-
Notifications
You must be signed in to change notification settings - Fork 5.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Introduce flash-attn (>= 2.5.0) and add test cases.
Signed-off-by: Tao He <[email protected]>
- Loading branch information
1 parent
93348d9
commit 5cbeb04
Showing
14 changed files
with
612 additions
and
95 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,258 @@ | ||
from typing import Optional | ||
import argparse | ||
import random | ||
import time | ||
|
||
import numpy as np | ||
import torch | ||
|
||
try: | ||
from flash_attn import flash_attn_func, flash_attn_with_kvcache | ||
except ImportError: | ||
flash_attn_func, flash_attn_with_kvcache = None, None | ||
|
||
from xformers import ops as xops | ||
from xformers.ops.fmha.attn_bias import BlockDiagonalCausalMask | ||
|
||
from vllm._C import cache_ops | ||
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, create_kv_caches_with_random | ||
|
||
NUM_BLOCKS = 1024 | ||
|
||
|
||
@torch.inference_mode() | ||
def main( | ||
version: str, | ||
num_seqs: int, | ||
context_len: int, | ||
num_query_heads: int, | ||
num_kv_heads: int, | ||
head_size: int, | ||
use_alibi: bool, | ||
block_size: int, | ||
dtype: torch.dtype, | ||
seed: int, | ||
do_profile: bool, | ||
device: str = "cuda", | ||
kv_cache_dtype: Optional[str] = None, | ||
) -> None: | ||
random.seed(seed) | ||
torch.random.manual_seed(seed) | ||
if torch.cuda.is_available(): | ||
torch.cuda.manual_seed(seed) | ||
|
||
use_flash_attn = version in ["flash-attn", "flash-attn-kvcache"] | ||
if use_flash_attn: | ||
if dtype not in [torch.half, torch.bfloat16 | ||
] or kv_cache_dtype != "auto": | ||
raise ValueError( | ||
"skip: flash-attn requires dtype and kv_cache_dtype to be half or bfloat16" | ||
) | ||
|
||
context_lens = [context_len for _ in range(num_seqs)] | ||
max_context_len = max(context_lens) | ||
context_lens_tensor = torch.tensor(context_lens, | ||
dtype=torch.int, | ||
device=device) | ||
zero_context_lens_tensor = torch.zeros_like(context_lens_tensor) | ||
|
||
scale = float(1.0 / (head_size**0.5)) | ||
qkv = torch.empty(num_seqs, | ||
max_context_len, | ||
num_query_heads + 2 * num_kv_heads, | ||
head_size, | ||
dtype=dtype, | ||
device=device) | ||
qkv.uniform_(-scale, scale) | ||
query, key, value = qkv.split( | ||
[num_query_heads, num_kv_heads, num_kv_heads], dim=2) | ||
|
||
assert num_query_heads % num_kv_heads == 0 | ||
num_queries_per_kv = num_query_heads // num_kv_heads | ||
|
||
alibi_slopes = None | ||
if use_alibi: | ||
alibi_slopes = torch.randn(num_query_heads, | ||
dtype=torch.float, | ||
device=device) | ||
|
||
# Create the block tables. | ||
if use_flash_attn: | ||
block_size = ((block_size + 256 - 1) // 256) * 256 | ||
max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size | ||
block_tables, slot_mapping = [], [] | ||
for seq_idx in range(num_seqs): | ||
block_table = [ | ||
random.randint(0, NUM_BLOCKS - 1) | ||
for _ in range(max_num_blocks_per_seq) | ||
] | ||
block_tables.append(block_table) | ||
slot_mapping.append([]) | ||
for i in range(context_lens[seq_idx]): | ||
block_number = block_table[i // block_size] | ||
block_offset = i % block_size | ||
slot = block_number * block_size + block_offset | ||
slot_mapping[-1].append(slot) | ||
for _ in range(max_context_len - context_lens[seq_idx]): | ||
slot_mapping[-1].append(-1) | ||
block_tables = torch.tensor(block_tables, dtype=torch.int, device=device) | ||
slot_mapping = torch.tensor(slot_mapping, dtype=torch.long, device=device) | ||
|
||
# Create the KV cache. | ||
key_caches, value_caches = create_kv_caches_with_random( | ||
NUM_BLOCKS, | ||
block_size, | ||
1, | ||
num_kv_heads, | ||
head_size, | ||
kv_cache_dtype, | ||
dtype, | ||
device=device, | ||
use_flash_attn=use_flash_attn) | ||
key_cache, value_cache = key_caches[0], value_caches[0] | ||
|
||
if version == "xformers": | ||
attn_bias = BlockDiagonalCausalMask.from_seqlens(context_lens) | ||
if num_queries_per_kv > 1: | ||
# Handle MQA and GQA | ||
key_repeated = torch.repeat_interleave(key, | ||
num_queries_per_kv, | ||
dim=2) | ||
value_repeated = torch.repeat_interleave(value, | ||
num_queries_per_kv, | ||
dim=2) | ||
else: | ||
key_repeated = key | ||
value_repeated = value | ||
|
||
def run_cuda_benchmark(num_iters: int, profile: bool = False) -> float: | ||
torch.cuda.synchronize() | ||
if profile: | ||
torch.cuda.cudart().cudaProfilerStart() | ||
start_time = time.perf_counter() | ||
|
||
for _ in range(num_iters): | ||
if version == "xformers": | ||
cache_ops.reshape_and_cache( | ||
key.reshape(-1, *key.shape[2:]), | ||
value.reshape(-1, *key.shape[2:]), | ||
key_cache, | ||
value_cache, | ||
slot_mapping.flatten(), | ||
kv_cache_dtype, | ||
) | ||
output = xops.memory_efficient_attention_forward( | ||
query.reshape(1, -1, *query.shape[2:]), | ||
key_repeated.reshape(1, -1, *key_repeated.shape[2:]), | ||
value_repeated.reshape(1, -1, *value_repeated.shape[2:]), | ||
attn_bias=attn_bias, | ||
p=0.0, | ||
scale=scale, | ||
) | ||
output = output.reshape(query.shape) | ||
elif version == "flash-attn": | ||
flat_slot_mapping = slot_mapping.flatten() | ||
slot_block_index = flat_slot_mapping // block_size | ||
slot_block_offset = flat_slot_mapping % block_size | ||
key_cache[slot_block_index, | ||
slot_block_offset, :, :] = key.reshape( | ||
-1, *key.shape[2:]) | ||
value_cache[slot_block_index, | ||
slot_block_offset, :, :] = value.reshape( | ||
-1, *key.shape[2:]) | ||
output = flash_attn_func( | ||
q=query, | ||
k=key, | ||
v=value, | ||
softmax_scale=scale, | ||
causal=True, | ||
alibi_slopes=alibi_slopes, | ||
) | ||
elif version == "flash-attn-kvcache": | ||
output = flash_attn_with_kvcache( | ||
q=query, | ||
k_cache=key_cache, | ||
v_cache=value_cache, | ||
k=key, | ||
v=value, | ||
cache_seqlens=zero_context_lens_tensor, | ||
block_table=block_tables, | ||
softmax_scale=scale, | ||
causal=True, | ||
alibi_slopes=alibi_slopes, | ||
) | ||
else: | ||
raise ValueError(f"Invalid version: {version}") | ||
torch.cuda.synchronize() | ||
|
||
end_time = time.perf_counter() | ||
if profile: | ||
torch.cuda.cudart().cudaProfilerStart() | ||
return (end_time - start_time) / num_iters | ||
|
||
# Warmup. | ||
print("Warming up...") | ||
run_benchmark = run_cuda_benchmark | ||
run_benchmark(num_iters=3, profile=False) | ||
|
||
# Benchmark. | ||
if do_profile: | ||
latency = run_benchmark(num_iters=1, profile=True) | ||
else: | ||
latency = run_benchmark(num_iters=100, profile=False) | ||
print( | ||
f"Version: {version}, Context Length: {context_len}, Batch size: {num_seqs}, Kernel running time: {latency * 1000000:.3f} us" | ||
) | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser( | ||
description="Benchmark the paged attention kernel.") | ||
parser.add_argument( | ||
"--version", | ||
type=str, | ||
choices=["xformers", "flash-attn", "flash-attn-kvcache"], | ||
default="xformers") | ||
parser.add_argument("--batch-size", type=int, default=8) | ||
parser.add_argument("--context-len", type=int, default=4096) | ||
parser.add_argument("--num-query-heads", type=int, default=64) | ||
parser.add_argument("--num-kv-heads", type=int, default=8) | ||
parser.add_argument("--head-size", | ||
type=int, | ||
choices=[64, 80, 96, 112, 128, 256], | ||
default=128) | ||
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16) | ||
parser.add_argument("--use-alibi", action="store_true") | ||
parser.add_argument("--dtype", | ||
type=str, | ||
choices=["half", "bfloat16", "float"], | ||
default="half") | ||
parser.add_argument("--seed", type=int, default=0) | ||
parser.add_argument("--profile", action="store_true") | ||
parser.add_argument( | ||
"--kv-cache-dtype", | ||
type=str, | ||
choices=["auto", "fp8_e5m2"], | ||
default="auto", | ||
help= | ||
'Data type for kv cache storage. If "auto", will use model data type.') | ||
parser.add_argument("--device", type=str, choices=["cuda"], default="cuda") | ||
args = parser.parse_args() | ||
print(args) | ||
|
||
if args.num_query_heads % args.num_kv_heads != 0: | ||
raise ValueError("num_query_heads must be divisible by num_kv_heads") | ||
main( | ||
version=args.version, | ||
num_seqs=args.batch_size, | ||
context_len=args.context_len, | ||
num_query_heads=args.num_query_heads, | ||
num_kv_heads=args.num_kv_heads, | ||
head_size=args.head_size, | ||
block_size=args.block_size, | ||
use_alibi=args.use_alibi, | ||
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype], | ||
seed=args.seed, | ||
do_profile=args.profile, | ||
kv_cache_dtype=args.kv_cache_dtype, | ||
) |
Oops, something went wrong.