Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This is recommit of the patch 16ff91e, reverted in 0c28a7c because it had an error in call of getFastMathFlags (base type should be FPMathOperator but not Instruction). The original commit message is duplicated below: Clang has builtin function '__builtin_isnan', which implements C library function 'isnan'. This function now is implemented entirely in clang codegen, which expands the function into set of IR operations. There are three mechanisms by which the expansion can be made. * The most common mechanism is using an unordered comparison made by instruction 'fcmp uno'. This simple solution is target-independent and works well in most cases. It however is not suitable if floating point exceptions are tracked. Corresponding IEEE 754 operation and C function must never raise FP exception, even if the argument is a signaling NaN. Compare instructions usually does not have such property, they raise 'invalid' exception in such case. So this mechanism is unsuitable when exception behavior is strict. In particular it could result in unexpected trapping if argument is SNaN. * Another solution was implemented in https://reviews.llvm.org/D95948. It is used in the cases when raising FP exceptions by 'isnan' is not allowed. This solution implements 'isnan' using integer operations. It solves the problem of exceptions, but offers one solution for all targets, however some can do the check in more efficient way. * Solution implemented by https://reviews.llvm.org/D96568 introduced a hook 'clang::TargetCodeGenInfo::testFPKind', which injects target specific code into IR. Now only SystemZ implements this hook and it generates a call to target specific intrinsic function. Although these mechanisms allow to implement 'isnan' with enough efficiency, expanding 'isnan' in clang has drawbacks: * The operation 'isnan' is hidden behind generic integer operations or target-specific intrinsics. It complicates analysis and can prevent some optimizations. * IR can be created by tools other than clang, in this case treatment of 'isnan' has to be duplicated in that tool. Another issue with the current implementation of 'isnan' comes from the use of options '-ffast-math' or '-fno-honor-nans'. If such option is specified, 'fcmp uno' may be optimized to 'false'. It is valid optimization in general, but it results in 'isnan' always returning 'false'. For example, in some libc++ implementations the following code returns 'false': std::isnan(std::numeric_limits<float>::quiet_NaN()) The options '-ffast-math' and '-fno-honor-nans' imply that FP operation operands are never NaNs. This assumption however should not be applied to the functions that check FP number properties, including 'isnan'. If such function returns expected result instead of actually making checks, it becomes useless in many cases. The option '-ffast-math' is often used for performance critical code, as it can speed up execution by the expense of manual treatment of corner cases. If 'isnan' returns assumed result, a user cannot use it in the manual treatment of NaNs and has to invent replacements, like making the check using integer operations. There is a discussion in https://reviews.llvm.org/D18513#387418, which also expresses the opinion, that limitations imposed by '-ffast-math' should be applied only to 'math' functions but not to 'tests'. To overcome these drawbacks, this change introduces a new IR intrinsic function 'llvm.isnan', which realizes the check as specified by IEEE-754 and C standards in target-agnostic way. During IR transformations it does not undergo undesirable optimizations. It reaches instruction selection, where is lowered in target-dependent way. The lowering can vary depending on options like '-ffast-math' or '-ffp-model' so the resulting code satisfies requested semantics. Differential Revision: https://reviews.llvm.org/D104854
- Loading branch information