Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Issue fixed #188

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 10 additions & 3 deletions src/lab/exp4/Manual.html
Original file line number Diff line number Diff line change
Expand Up @@ -104,15 +104,22 @@ <h1 class="text-h2-lightblue">Interatomic van der Waals forces</h1><div class="c
</p>
<table>
<tr><td>STEP 1: Click on 'start' to start the experiment.</td></tr>
<tr><td><img height="300" src="images/Screenshot.png" width="300"/></td></tr>
<tr><td><img height="700" src="images/Screenshot.png" width="1000"/></td></tr>
</table>
<table>
<br/>
<tr><td>STEP 2:The coordinates of particles can be varied by changing the position of sliders,a plot of energy ,force is seen. </td></tr>
<tr><td><img height="300" src="images/Screenshot-1.png" width="300"/></td></tr>
</table>

<tr><td><img height="700" src="images/Screenshot-1.png" width="1000"/></td></tr>

</table>
<table>
</table>
<br/>
<tr><td>STEP 3: Sigma factor for both the particles can be increased or decreased by moving the slider shown below.</td><!--<td-->
<tr><td><img height="300" src="images/Screenshot-2.png" width="300"/></td></tr>

<tr><td><img height="700" src="images/Screenshot-2.png" width="1000"/></td></tr>
</tr></table>
</div> </div>
</div>
Expand Down
42 changes: 21 additions & 21 deletions src/lab/exp8/Theory.html
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@ <h1 class="text-h2-lightblue">Many-body forces in a polyatomic molecule</h1><div
</p>
<p align="justify">
The bond stretching can be generally explained by considering just attaching a spring in between two atoms, as shown in the figure below.
<li><img align="center" height="100" src="strec.gif" width="200"/></li>
<li><img align="center" height="100" src="strec.gif" width="300"/></li>
<p align="justify">When the mass of one of the atoms is thought be high when compared to the other, it is similar to a mass loaded by spring. Hooke's law can be applied to this system. Now the question is, how the energy of this system changes with change in stretching and compression of the bond? To find a functional form for bond stretching interactions it is helpful to consider how the energy of a bond changes with its length. The energy of a bond is lowest at a particular natural or reference length. If the bond is then compressed the electron clouds of the two atoms forming it will gradually overlap. This leads to a rapid increase in energy. If the bond is stretched beyond equilibrium the energy starts to increase. Eventually however, the bond dissociates.</p>
<p align="justify"> For small deviations from the equilibrium bond length the energy can be written as a taylor expansion in r-r<sub>0</sub>, with r<sub>0</sub> representing the equilibrium bond-length.</p>
<table align="center" border="0" cellpadding="0" cellspacing="0">
Expand All @@ -122,13 +122,13 @@ <h1 class="text-h2-lightblue">Many-body forces in a polyatomic molecule</h1><div
<p align="justify">In its simplest form,the above equation is terminated at the (r-r<sub>0</sub>)<sup>2</sup> term. This is called the harmonic approximation. setting E(r<sub>0</sub>)=0, and noting that at r=r<sub>0</sub> the force and hence first derivative of the energy is zero, we have </p>
<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<li><b><img align="center" height="150" src="harmonic.png" width="300"/></b></li>
<li><b><img align="center" height="72" src="harmonic.png" width="450"/></b></li>
</tr>
</table>
<p align="justify">where k<sub>r</sub> is the harmonic force constant given by</p>
<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<li><img align="center" height="150" src="derivative.png" width="300"/></li>
<li><img align="center" height="85" src="derivative.png" width="450"/></li>
</tr>
</table>
<!--<li><img align="center"src="harmonic force constant.gif" height="125" width="125"></li>-->
Expand All @@ -140,13 +140,13 @@ <h1 class="text-h2-lightblue">Many-body forces in a polyatomic molecule</h1><div
</p>
<p align="justify"><b>Bond angle:</b>
<p align="justify">The angle between two bonds sharing a common atom is known as the bond angle.</p>
<li><img < align="center" height="200" li src="angle.jpeg" width="200"><li>
<li><img < align="center" height="210" li src="angle.jpeg" width="320"><li>
<p align="justify">The distortion in the angle of the molecule helps the molecule to store energy in the form of potential energy. This storage of energy in molecule referred as a "strain". The potential energy stored due to the displacement of bond angle from equilibrium positions is called "Angle Strain". For eg:
The angle strain in the molecule of cyclopropane renders it to be highly unstable and reactive due large amount of potential energy stored in it.</p>
<p align="justify">As bond angles are found (experimentally and theoretically) to vary around a single value it is sufficient in most applications to use a harmonic representation (in a similar manner to the bond potential)</p>
<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<li> <img align="center" height="150" src="bondangle.png" width="300"/></li>
<li> <img align="center" height="70" src="bondangle.png" width="450"/></li>
</tr>
</table>
<!--<li> <img align="center"src= "angle.gif" height="75" width= "150"-->
Expand All @@ -158,21 +158,21 @@ <h1 class="text-h2-lightblue">Many-body forces in a polyatomic molecule</h1><div
Dihedral angle is also called as face angle.</br></br></p>
<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<li><img < height="150" li src="cos.png" width="250">
<li><img < height="80" li src="cos.png" width="450">
</img></li></tr>
</table>
<!--<li><img src="cos.png" height= "35" width= "25" </li>-->
<li>                                                                   

<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<li> <img < align="center-right" height="150" li src="dihedral2.png" width="150">
<li> <img < align="center-right" height="300" li src="dihedral2.png" width="350">
</img></li></tr>
</table>
<!-- <img align= "center-right" src= "dihedral2.png" height= "200" width= "200" </li>-->
<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<li>   <img < height="150" li src="Screenshot-3.png" width="250">
<li>   <img < height="120" li src="Screenshot-3.png" width="750">
</img></li></tr>
</table>
<table align="center" border="0" cellpadding="0" cellspacing="0">
Expand All @@ -194,33 +194,33 @@ <h1 class="text-h2-lightblue">Many-body forces in a polyatomic molecule</h1><div
<p align="justify"> For the plane going through the atoms i, j and k this normal vector m is expressed as</p>
<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<li><img < height="100" src="m.png" tr width="100">
<li><img < height="80" src="m.png" tr width="450">
</img></li></tr></table>
<p align="justify">For the plane going through the atoms j, k and l this normal vector n is expressed as</p>
<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<li><img < height="100" li src="manybody5.png" width="100">
<li><img < height="60" li src="manybody5.png" width="450">
</img></li></tr>
</table>
<!--<li><img src= "eq_dihedral2.png" height= "50" width= "40"</li>-->
<p align="justify">For the torsional angle a similar definition as in (4) can be used. The cosine of the torsional angle Φ<sub>ijkl</sub> is expressed as </p>
<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<li><img < height="150" li src="manybody6.png" width="300">
<li><img < height="70" li src="manybody6.png" width="510">
</img></li></tr>
</table>
<!--<li><img src= "cosangle.png" height= "50" width= "40"</li>-->
<p align="justify"> and the sine of the same angle Φ<sub>ijkl</sub> as </p>
<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<li><img < height="150" li src="sine.png" width="300">
<li><img < height="70" li src="sine.png" width="510">
</img></li></tr>
</table>
<!--<li><img src= "sinangle.png" height= "50" width= "40" </li>-->
<p align="justify">where m, n, and r<sub>jk</sub> are the lengths of the respective vectors. Using the two definitions for the cosine and sine and taking the IUPAC/IUB convention into account, the torsional angle is given by </p>
<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<li><img < height="150" li src="tan.png" width="350">
<li><img < height="70" li src="tan.png" width="510">
</img></li></tr>
</table>
<!--<li><img src= "dihedral_angle.png" height= "50" weight= "50" </li>-->
Expand Down Expand Up @@ -259,7 +259,7 @@ <h1 class="text-h2-lightblue">Many-body forces in a polyatomic molecule</h1><div
but as the separation is reduced the energy decreases, passing through a minimum and from there on increasing rapidly.</p>
<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<li><img < height="100" li src="vdw.png" width="100">
<li><img < height="200" li src="vdw.png" width="250">
</img></li></tr>
</table>
<!--<li><img src= "vdw.png"</li>-->
Expand All @@ -278,7 +278,7 @@ <h1 class="text-h2-lightblue">Many-body forces in a polyatomic molecule</h1><div

<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<img < height="300" li src="lj2.jpg" width="300">
<img < height="400" li src="lj2.jpg" width="500">
</img></tr>
</table>
<!--<img src= "lj2.jpg" height= "400" width= "400"</li>-->
Expand All @@ -289,7 +289,7 @@ <h1 class="text-h2-lightblue">Many-body forces in a polyatomic molecule</h1><div

<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<img < height="150" li src="model10.png" width="250">
<img < height="70" li src="model10.png" width="300">
</img></tr>
</table>
<!--<img src= "sigij.png" height= "50" width= "50" </li>-->
Expand All @@ -300,7 +300,7 @@ <h1 class="text-h2-lightblue">Many-body forces in a polyatomic molecule</h1><div

<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<li> <img < height="150" li src="force_tex.png" width="500">
<li> <img < height="80" li src="force_tex.png" width="900">
</img></li></tr>
</table>
<!--<img src= "ljforce.png" </li>-->
Expand All @@ -325,7 +325,7 @@ <h1 class="text-h2-lightblue">Many-body forces in a polyatomic molecule</h1><div

<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<img < height="50" li src="charge.gif" width="50">
<img < height="100" li src="charge.gif" width="100">
</img></tr>
</table>
<!--<img src= "charge.gif" height= "50" width= "50" </li>-->
Expand All @@ -334,7 +334,7 @@ <h1 class="text-h2-lightblue">Many-body forces in a polyatomic molecule</h1><div

<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<img < height="50" li src="dipole.gif" width="50">
<img < height="80" li src="dipole.gif" width="200">
</img></tr>
</table>
<!--<img src= "dipole.gif" height= "50" width= "50" </li>-->
Expand All @@ -349,7 +349,7 @@ <h1 class="text-h2-lightblue">Many-body forces in a polyatomic molecule</h1><div

<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<img < height="150" li src="electrostatic_potential.png" width="350">
<img < height="80" li src="electrostatic_potential.png" width="500">
</img></tr>
</table>
<!--<img src= "coulomb.png" height= "100" width= "100"</li>-->
Expand All @@ -358,7 +358,7 @@ <h1 class="text-h2-lightblue">Many-body forces in a polyatomic molecule</h1><div

<table align="center" border="0" cellpadding="0" cellspacing="0">
<tr>
<img < height="150" li src="last.png" width="350">
<img < height="80" li src="last.png" width="450">
</img></tr>
</table>
</li></li></li></li></li></li></li></li></p>
Expand Down