Skip to content

e-SNLI-VE: Corrected Visual-Textual Entailment with Natural Language Explanations

Notifications You must be signed in to change notification settings

virginie-do/e-SNLI-VE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DEPRECATED

This repository is deprecated. The relevant version of the dataset is available at: https://github.com/maximek3/e-ViL.

Check out our new paper: e-ViL: A Dataset and Benchmark for Natural Language Explanations in Vision-Language Tasks (https://arxiv.org/abs/2105.03761)

e-SNLI-VE

This repository contains the dataset and code for our paper:

  • e-SNLI-VE: Corrected Visual-Textual Entailment with Natural Language Explanations [arXiv] [1]

It will be presented at the 2020 CVPR workshop on Fair, Data Efficient and Trusted Computer Vision.

Dataset

The e-SNLI-VE dataset is located in the folder data/. It extends both SNLI-VE [2] and e-SNLI [3]

Due to the Github size restrictions, the training set is split in two files, please simply merge them.

Example from e-SNLI-VE

The dataset was previously called "e-SNLI-VE-2.0" which we changed to "e-SNLI-VE" to avoid confusions.

Code

Prerequisites

  1. Python 3.7 / Tensorflow 1.14
  2. Flickr30k ResNet-101 / Fast R-CNN feature files and image_names
  3. Glove embeddings

See this repository for more details.

Training and testing

python train_explain.py --train_filename='./data/e_vsnli_train.tsv'  --dev_filename='./data/e_vsnli_dev.tsv' --vectors_filename="./data/glove.840B.300d.txt" --img_names_filename='./data/image_features/flickr30k_resnet101_bottom_up_img_names.json' --img_features_filename='./data/image_features/flickr30k_resnet101_bottom_up_img_features.npy' --model_save_filename='./models/e_vsnli' --batch_size=100 --max_vocab=5000 --alpha=0.8 --buffer_size=300000

python eval_explain.py --test_filename='./data/e_vsnli_test.tsv' --model_filename='./models/e_vsnli' --img_names_filename='./data/image_features/flickr30k_resnet101_bottom_up_img_names.json' --img_features_filename='./data/image_features/flickr30k_resnet101_bottom_up_img_features.npy' --result_filename="./models/result_e_vsnli"

Bibtex

If you use this dataset in your work, please cite our paper:

@misc{do2020esnlive20,
    title={e-SNLI-VE: Corrected Visual-Textual Entailment with Natural Language Explanations},
    author={Virginie Do and Oana-Maria Camburu and Zeynep Akata and Thomas Lukasiewicz},
    year={2020},
    eprint={2004.03744},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

References

[1] Do, V., Camburu, O., Akata, Z., & Lukasiewicz, T. (2020). e-SNLI-VE-2.0: Corrected Visual-Textual Entailment with Natural Language Explanations. arXiv preprint arXiv:2004.03744.

[2] Camburu, O. M., Rocktäschel, T., Lukasiewicz, T., & Blunsom, P. (2018). e-SNLI: Natural Language Inference with Natural Language Explanations. In Advances in Neural Information Processing Systems (pp. 9539-9549).

[3] Xie, N., Lai, F., Doran, D., & Kadav, A. (2019). Visual Entailment: A Novel Task for Fine-Grained Image Understanding. arXiv preprint arXiv:1901.06706.

About

e-SNLI-VE: Corrected Visual-Textual Entailment with Natural Language Explanations

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages