-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ca3046d
commit d6a0b28
Showing
1 changed file
with
99 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
import re | ||
import numpy as np | ||
import polars as pl | ||
import warnings | ||
import patsy | ||
from .model_abstract import ModelAbstract | ||
|
||
|
||
class ModelStatsmodels(ModelAbstract): | ||
def get_coef(self): | ||
return np.array(self.model.params) | ||
|
||
def get_modeldata(self): | ||
df = self.model.model.data.frame | ||
if not isinstance(df, pl.DataFrame): | ||
df = pl.from_pandas(df) | ||
return df | ||
|
||
def get_response_name(self): | ||
return self.model.model.endog_names | ||
|
||
def get_vcov(self, vcov=True): | ||
if isinstance(vcov, bool): | ||
if vcov is True: | ||
V = self.model.cov_params() | ||
else: | ||
V = None | ||
elif isinstance(vcov, str): | ||
lab = f"cov_{vcov}" | ||
if hasattr(self.model, lab): | ||
V = getattr(self.model, lab) | ||
else: | ||
raise ValueError(f"The model object has no {lab} attribute.") | ||
else: | ||
raise ValueError( | ||
'`vcov` must be a boolean or a string like "HC3", which corresponds to an attribute of the model object such as "vcov_HC3".' | ||
) | ||
|
||
if V is not None: | ||
V = np.array(V) | ||
if V.shape != (len(self.coef), len(self.coef)): | ||
raise ValueError( | ||
"vcov must be a square numpy array with dimensions equal to the length of self.coef" | ||
) | ||
|
||
return V | ||
|
||
def get_variables_names(self, variables, newdata): | ||
if variables is None: | ||
variables = self.model.model.exog_names | ||
variables = [re.sub("\[.*\]", "", x) for x in variables] | ||
variables = [x for x in variables if x in newdata.columns] | ||
variables = pl.Series(variables).unique().to_list() | ||
if isinstance(variables, (str, dict)): | ||
variables = [variables] if isinstance(variables, str) else variables | ||
elif isinstance(variables, list) and all( | ||
isinstance(var, str) for var in variables | ||
): | ||
pass | ||
else: | ||
raise ValueError( | ||
"`variables` must be None, a dict, string, or list of strings" | ||
) | ||
good = [x for x in variables if x in newdata.columns] | ||
bad = [x for x in variables if x not in newdata.columns] | ||
if len(bad) > 0: | ||
bad = ", ".join(bad) | ||
warnings.warn(f"Variable(s) not in newdata: {bad}") | ||
if len(good) == 0: | ||
raise ValueError("There is no valid column name in `variables`.") | ||
return variables | ||
|
||
def get_predict(self, params, newdata: pl.DataFrame): | ||
if isinstance(newdata, np.ndarray): | ||
exog = newdata | ||
else: | ||
y, exog = patsy.dmatrices(self.model.model.formula, newdata.to_pandas()) | ||
p = self.model.model.predict(params, exog) | ||
if p.ndim == 1: | ||
p = pl.DataFrame({"rowid": range(newdata.shape[0]), "estimate": p}) | ||
elif p.ndim == 2: | ||
colnames = {f"column_{i}": str(i) for i in range(p.shape[1])} | ||
p = ( | ||
pl.DataFrame(p) | ||
.rename(colnames) | ||
.with_columns( | ||
pl.Series(range(p.shape[0]), dtype=pl.Int32).alias("rowid") | ||
) | ||
.melt(id_vars="rowid", variable_name="group", value_name="estimate") | ||
) | ||
else: | ||
raise ValueError( | ||
"The `predict()` method must return an array with 1 or 2 dimensions." | ||
) | ||
p = p.with_columns(pl.col("rowid").cast(pl.Int32)) | ||
return p | ||
|
||
def get_formula(self): | ||
return self.model.model.formula |