Skip to content

Commit

Permalink
[Obs AI Assistant] Improve LLM evaluation framework (elastic#204574)
Browse files Browse the repository at this point in the history
Closes elastic#203122

## Summary

### Problem
The Obs AI Assistant LLM evaluation framework cannot successfully run in
the current state in the `main` branch and has missing scenarios.

Problems identified:
- Unable to run the evaluation with a local Elasticsearch instance
- Alerts and APM results are skipped entirely when reporting the final
result on the terminal (due to consistent failures in the tests)
- State contaminations between runs makes the script throw errors when
run multiple times.
- Authentication issues when calling `/internal` APIs

### Solution
As a part of spacetime, worked on fixing the current issues in the LLM
evaluation framework and working on improving and enhancing the
framework.

#### Fixes
| Problem                | RC (Root Cause)                | Fixed? |
|------------------------|---------------------------------|--------|
| Running with a local Elasticsearch instance | Service URLs were not
picking up the correct auth because of the format specified in
`kibana.dev.yml` | ✅ |
| Alerts and APM results skipped in final result | Most (if not all)
tests are failing in the alerts and APM suites, hence no final results
are reported. | ✅ (all test scenarios fixed) |
| State contaminations between runs | Some `after` hooks were not
running successfully because of an error in the `callKibana` method | ✅
|
| Authentication issues when calling `/internal` APIs | The required
headers are not present in the request | ✅ |

#### Enhancements / Improvements

| What was added  | How does it enhance the framework  | 
|------------------------|---------------------------------|
| Added new KB retrieval test to the KB scenario | More scenarios
covered |
| Added new scenario for the `retrieve_elastic_doc` function | Cover
missing newly added functions |
| Enhance how scope is used for each scenario and apply correct scope |
The scope determines the wording of the system message. Certain
scenarios need to be scoped to observability (e.g.: `alerts`) to produce
the best result. At present all scenarios use the scope `all` which is
not ideal and doesn't align with the actual functionality of the AI
Assistant |
| Avoid throwing unnecessary errors on the console (This was fixed by
adding guard rails, e.g.: not creating a dataview if it exists) | Makes
it easier to navigate through the results printed on the terminal |
| Improved readme | Easier to configure and use the framework while
identifying all possible options |
| Improved logging | Easier to navigate through the terminal output |

### Checklist

- [x] The PR description includes the appropriate Release Notes section,
and the correct `release_note:*` label is applied per the
[guidelines](https://www.elastic.co/guide/en/kibana/master/contributing.html#kibana-release-notes-process)

---------

Co-authored-by: kibanamachine <[email protected]>
  • Loading branch information
viduni94 and kibanamachine authored Dec 31, 2024
1 parent 6a25db9 commit 38310a5
Show file tree
Hide file tree
Showing 10 changed files with 422 additions and 196 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

## Overview

This tool is developed for our team working on the Elastic Observability platform, specifically focusing on evaluating the Observability AI Assistant. It simplifies scripting and evaluating various scenarios with the Large Language Model (LLM) integration.
This tool is developed for our team working on the Elastic Observability platform, specifically focusing on evaluating the Observability AI Assistant. It simplifies scripting and evaluating various scenarios with Large Language Model (LLM) integrations.

## Setup requirements

Expand All @@ -12,26 +12,40 @@ This tool is developed for our team working on the Elastic Observability platfor

## Running evaluations

Run the tool using:

`$ node x-pack/solutions/observability/plugins/observability_solution/observability_ai_assistant_app/scripts/evaluation/index.js`

This will evaluate all existing scenarios, and write the evaluation results to the terminal.

### Configuration

#### Kibana and Elasticsearch

By default, the tool will look for a Kibana instance running locally (at `http://localhost:5601`, which is the default address for running Kibana in development mode). It will also attempt to read the Kibana config file for the Elasticsearch address & credentials. If you want to override these settings, use `--kibana` and `--es`. Only basic auth is supported, e.g. `--kibana http://username:password@localhost:5601`. If you want to use a specific space, use `--spaceId`
#### To run the evaluation using a local Elasticsearch and Kibana instance:

#### Connector
- Run Elasticsearch locally: `yarn es snapshot --license trial`
- Start Kibana (Default address for Kibana in dev mode: `http://localhost:5601`)
- Run this command to start evaluating:
`$ node x-pack/solutions/observability/plugins/observability_ai_assistant_app/scripts/evaluation/index.js`

Use `--connectorId` to specify a `.gen-ai` or `.bedrock` connector to use. If none are given, it will prompt you to select a connector based on the ones that are available. If only a single supported connector is found, it will be used without prompting.

#### Persisting conversations

By default, completed conversations are not persisted. If you do want to persist them, for instance for reviewing purposes, set the `--persist` flag to store them. This will also generate a clickable link in the output of the evaluation that takes you to the conversation.

If you want to clear conversations on startup, use the `--clear` flag. This only works when `--persist` is enabled. If `--spaceId` is set, only conversations for the current space will be cleared.
This will evaluate all existing scenarios, and write the evaluation results to the terminal.

When storing conversations, the name of the scenario is used as a title. Set the `--autoTitle` flag to have the LLM generate a title for you.
#### To run the evaluation using a hosted deployment:
- Add the credentials of Elasticsearch to `kibana.dev.yml` as follows:
```
elasticsearch.hosts: https://<hosted-url>:<port>
elasticsearch.username: <username>
elasticsearch.password: <password>
elasticsearch.ssl.verificationMode: none
elasticsearch.ignoreVersionMismatch: true
```
- Start Kibana
- Run this command to start evaluating: `node x-pack/solutions/observability/plugins/observability_ai_assistant_app/scripts/evaluation/index.js --kibana http://<username>:<password>@localhost:5601`

By default the script will use the Elasticsearch credentials specified in `kibana.dev.yml`, if you want to override it use the `--es` flag when running the evaluation script:
E.g.: `node x-pack/solutions/observability/plugins/observability_ai_assistant_app/scripts/evaluation/index.js --kibana http://<username>:<password>@localhost:5601 --es https://<username>:<password>@<hosted-url>:<port>`

The `--kibana` and `--es` flags override the default credentials. Only basic auth is supported.

## Other (optional) configuration flags
- `--connectorId` - Specify a generative AI connector to use. If none are given, it will prompt you to select a connector based on the ones that are available. If only a single supported connector is found, it will be used without prompting.
- `--evaluateWith`: The connector ID to evaluate with. Leave empty to use the same connector, use "other" to get a selection menu.
- `--spaceId` - Specify the space ID if you want to use a specific space.
- `--persist` - By default, completed conversations are not persisted. If you want to persist them, for instance for reviewing purposes, include this flag when running the evaluation script. This will also generate a clickable link in the output of the evaluation that takes you to the conversation in Kibana.
- `--clear` - If you want to clear conversations on startup, include this command when running the evaluation script. This only works when `--persist` is enabled. If `--spaceId` is set, only conversations for the current space will be cleared
- `--autoTitle`: When storing conversations, the name of the scenario is used as a title. Set this flag to have the LLM generate a title for you. This only works when `--persist` is enabled.
- `--files`: A file or list of files containing the scenarios to evaluate. Defaults to all.
- `--grep`: A string or regex to filter scenarios by.
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,8 @@ function runEvaluations() {
kibana: argv.kibana,
});

log.info(`Elasticsearch URL: ${serviceUrls.esUrl}`);

const kibanaClient = new KibanaClient(log, serviceUrls.kibanaUrl, argv.spaceId);
const esClient = new Client({
node: serviceUrls.esUrl,
Expand Down Expand Up @@ -100,7 +102,7 @@ function runEvaluations() {
evaluationConnectorId: evaluationConnector.id!,
persist: argv.persist,
suite: mocha.suite,
scopes: ['all'],
scopes: ['observability'],
});

const header: string[][] = [
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ import { Message, MessageRole } from '@kbn/observability-ai-assistant-plugin/com
import { streamIntoObservable } from '@kbn/observability-ai-assistant-plugin/server';
import { ToolingLog } from '@kbn/tooling-log';
import axios, { AxiosInstance, AxiosResponse, isAxiosError } from 'axios';
import { isArray, omit, pick, remove } from 'lodash';
import { omit, pick, remove } from 'lodash';
import pRetry from 'p-retry';
import {
concatMap,
Expand Down Expand Up @@ -59,13 +59,14 @@ interface Options {
screenContexts?: ObservabilityAIAssistantScreenContext[];
}

type CompleteFunction = (
...args:
| [StringOrMessageList]
| [StringOrMessageList, Options]
| [string | undefined, StringOrMessageList]
| [string | undefined, StringOrMessageList, Options]
) => Promise<{
interface CompleteFunctionParams {
messages: StringOrMessageList;
conversationId?: string;
options?: Options;
scope?: AssistantScope;
}

type CompleteFunction = (params: CompleteFunctionParams) => Promise<{
conversationId?: string;
messages: InnerMessage[];
errors: ChatCompletionErrorEvent[];
Expand All @@ -74,7 +75,6 @@ type CompleteFunction = (
export interface ChatClient {
chat: (message: StringOrMessageList) => Promise<InnerMessage>;
complete: CompleteFunction;

evaluate: (
{}: { conversationId?: string; messages: InnerMessage[]; errors: ChatCompletionErrorEvent[] },
criteria: string[]
Expand Down Expand Up @@ -124,10 +124,10 @@ export class KibanaClient {
return this.axios<T>({
method,
url,
data: data || {},
...(method.toLowerCase() === 'delete' && !data ? {} : { data: data || {} }),
headers: {
'kbn-xsrf': 'true',
'x-elastic-internal-origin': 'foo',
'x-elastic-internal-origin': 'Kibana',
},
}).catch((error) => {
if (isAxiosError(error)) {
Expand All @@ -148,7 +148,7 @@ export class KibanaClient {
}

async installKnowledgeBase() {
this.log.debug('Checking to see whether knowledge base is installed');
this.log.info('Checking whether the knowledge base is installed');

const {
data: { ready },
Expand All @@ -157,7 +157,7 @@ export class KibanaClient {
});

if (ready) {
this.log.info('Knowledge base is installed');
this.log.success('Knowledge base is already installed');
return;
}

Expand All @@ -176,15 +176,15 @@ export class KibanaClient {
{ retries: 10 }
);

this.log.info('Knowledge base installed');
this.log.success('Knowledge base installed');
}

async createSpaceIfNeeded() {
if (!this.spaceId) {
return;
}

this.log.debug(`Checking if space ${this.spaceId} exists`);
this.log.info(`Checking if space ${this.spaceId} exists`);

const spaceExistsResponse = await this.callKibana<{
id?: string;
Expand All @@ -204,7 +204,7 @@ export class KibanaClient {
});

if (spaceExistsResponse.data.id) {
this.log.debug(`Space id ${this.spaceId} found`);
this.log.success(`Space id ${this.spaceId} found`);
return;
}

Expand All @@ -223,14 +223,26 @@ export class KibanaClient {
);

if (spaceCreatedResponse.status === 200) {
this.log.info(`Created space ${this.spaceId}`);
this.log.success(`Created space ${this.spaceId}`);
} else {
throw new Error(
`Error creating space: ${spaceCreatedResponse.status} - ${spaceCreatedResponse.data}`
);
}
}

getMessages(message: string | Array<Message['message']>): Array<Message['message']> {
if (typeof message === 'string') {
return [
{
content: message,
role: MessageRole.User,
},
];
}
return message;
}

createChatClient({
connectorId,
evaluationConnectorId,
Expand All @@ -244,22 +256,11 @@ export class KibanaClient {
suite?: Mocha.Suite;
scopes: AssistantScope[];
}): ChatClient {
function getMessages(message: string | Array<Message['message']>): Array<Message['message']> {
if (typeof message === 'string') {
return [
{
content: message,
role: MessageRole.User,
},
];
}
return message;
}

const that = this;

let currentTitle: string = '';
let firstSuiteName: string = '';
let currentScopes = scopes;

if (suite) {
suite.beforeEach(function () {
Expand Down Expand Up @@ -362,23 +363,27 @@ export class KibanaClient {
that.log.info('Chat', name);

const chat$ = defer(() => {
that.log.debug(`Calling chat API`);
that.log.info('Calling the /chat API');
const params: ObservabilityAIAssistantAPIClientRequestParamsOf<'POST /internal/observability_ai_assistant/chat'>['params']['body'] =
{
name,
messages,
connectorId: connectorIdOverride || connectorId,
functions: functions.map((fn) => pick(fn, 'name', 'description', 'parameters')),
functionCall,
scopes,
scopes: currentScopes,
};

return that.axios.post(
that.getUrl({
pathname: '/internal/observability_ai_assistant/chat',
}),
params,
{ responseType: 'stream', timeout: NaN }
{
responseType: 'stream',
timeout: NaN,
headers: { 'x-elastic-internal-origin': 'Kibana' },
}
);
}).pipe(
switchMap((response) => streamIntoObservable(response.data)),
Expand All @@ -400,54 +405,33 @@ export class KibanaClient {
return {
chat: async (message) => {
const messages = [
...getMessages(message).map((msg) => ({
...this.getMessages(message).map((msg) => ({
message: msg,
'@timestamp': new Date().toISOString(),
})),
];
return chat('chat', { messages, functions: [] });
},
complete: async (...args) => {
that.log.info(`Complete`);
let messagesArg: StringOrMessageList | undefined;
let conversationId: string | undefined;
let options: Options = {};

function isMessageList(arg: any): arg is StringOrMessageList {
return isArray(arg) || typeof arg === 'string';
}
complete: async ({
messages: messagesArg,
conversationId,
options = {},
scope: newScope,
}: CompleteFunctionParams) => {
that.log.info('Calling complete');

// | [StringOrMessageList]
// | [StringOrMessageList, Options]
// | [string, StringOrMessageList]
// | [string, StringOrMessageList, Options]
if (args.length === 1) {
messagesArg = args[0];
} else if (args.length === 2 && !isMessageList(args[1])) {
messagesArg = args[0];
options = args[1];
} else if (
args.length === 2 &&
(typeof args[0] === 'string' || typeof args[0] === 'undefined') &&
isMessageList(args[1])
) {
conversationId = args[0];
messagesArg = args[1];
} else if (args.length === 3) {
conversationId = args[0];
messagesArg = args[1];
options = args[2];
}
// set scope
currentScopes = [newScope || 'observability'];

const messages = [
...getMessages(messagesArg!).map((msg) => ({
...this.getMessages(messagesArg!).map((msg) => ({
message: msg,
'@timestamp': new Date().toISOString(),
})),
];

const stream$ = defer(() => {
that.log.debug(`Calling /chat/complete API`);
that.log.info(`Calling /chat/complete API`);
return from(
that.axios.post(
that.getUrl({
Expand All @@ -460,9 +444,13 @@ export class KibanaClient {
connectorId,
persist,
title: currentTitle,
scopes,
scopes: currentScopes,
},
{ responseType: 'stream', timeout: NaN }
{
responseType: 'stream',
timeout: NaN,
headers: { 'x-elastic-internal-origin': 'Kibana' },
}
)
);
}).pipe(
Expand Down Expand Up @@ -615,7 +603,7 @@ export class KibanaClient {
})
.concat({
score: errors.length === 0 ? 1 : 0,
criterion: 'The conversation encountered errors',
criterion: 'The conversation did not encounter any errors',
reasoning: errors.length
? `The following errors occurred: ${errors.map((error) => error.error.message)}`
: 'No errors occurred',
Expand Down
Loading

0 comments on commit 38310a5

Please sign in to comment.