Skip to content
This repository has been archived by the owner on Oct 26, 2020. It is now read-only.

Commit

Permalink
init
Browse files Browse the repository at this point in the history
  • Loading branch information
vermouth1992 committed Feb 27, 2019
0 parents commit f0d504f
Show file tree
Hide file tree
Showing 8 changed files with 615 additions and 0 deletions.
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2019 Chi Zhang

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
30 changes: 30 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
# Synthetic Time Series Generation using Generative Adversarial Network in Smart Grid
Code that replicate work [Generative Adversarial Network for Synthetic Time Series Data Generation in Smart Grids](https://ieeexplore.ieee.org/abstract/document/8587464).

Note that in this repo, we change our model to [ACGAN](https://arxiv.org/abs/1610.09585) instead of the original Conditional GAN.

Focus on periodic time series with daily, weekly and yearly patterns including load and PV generation.

## Package Requirements
```
tqdm==4.30.0
numpy==1.16.2
Keras==2.2.4
tensorboardX==1.6
tensorflow==1.13.1
tensorboard==1.13.0
```

## Usage
Example:

- To train a model using Pecan Street Dataset for user with id 171, run

`python main.py --train --num_epoch 100 --id 171`

- To generate synthetic data, run

`python main.py --id 171`

## License
MIT
187 changes: 187 additions & 0 deletions acgan.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
"""
Auxiliary classifier DCGAN for pecan dataset using Keras
"""

import datetime

import keras
import numpy as np
from keras.layers import Input, Conv1D, LeakyReLU, BatchNormalization, Flatten, Dense, Lambda
from keras.layers import Reshape, Conv2DTranspose, Activation, Embedding, Concatenate
from keras.models import Model
from keras.optimizers import Adam
from keras.utils import to_categorical
from tensorboardX import SummaryWriter
from tqdm import tqdm

from data import date_format_day
from metric import mmd_loss


class ACGAN(object):
def __init__(self, input_dim, window_length, weight_path, code_size=64, learning_date=1e-4,
batch_size=32):
self.input_dim = input_dim
self.code_size = code_size
assert window_length % 8 == 0, 'This DCGAN architecture requires window length to be multiple of 8'
self.window_length = window_length
self.learning_rate = learning_date
self.batch_size = batch_size
self.weight_path = weight_path

self.generator = self._create_generator()
self.discriminator = self._create_discriminator()
self.discriminator_generator = self._combine_generator_discriminator()

def _create_generator(self):
final_window_length = int(self.window_length / 8)
noise = Input(shape=(self.code_size,))
month_label_input = Input(shape=(1,), dtype='int32')
day_label_input = Input(shape=(1,), dtype='int32')
self.month_embedding_layer = Embedding(input_dim=12, output_dim=self.code_size)
self.day_embedding_layer = Embedding(input_dim=7, output_dim=self.code_size)
month_embedding = Flatten()(self.month_embedding_layer(month_label_input))
day_embedding = Flatten()(self.day_embedding_layer(day_label_input))
x = Concatenate(axis=-1)([noise, month_embedding, day_embedding])
x = Dense(final_window_length * 64)(x)
x = Reshape(target_shape=(final_window_length, 1, 64))(x)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.2)(x)
x = Conv2DTranspose(filters=32, kernel_size=(4, 1), strides=(2, 1), padding='same')(x)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.2)(x)
x = Conv2DTranspose(filters=16, kernel_size=(4, 1), strides=(2, 1), padding='same')(x)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.2)(x)
x = Conv2DTranspose(filters=self.input_dim, kernel_size=(4, 1), strides=(2, 1), padding='same')(x)
x = Lambda(lambda x: keras.backend.squeeze(x, axis=-2))(x)
output = Activation('sigmoid')(x)
model = Model(inputs=[noise, month_label_input, day_label_input], outputs=output)
model.compile(optimizer=Adam(lr=self.learning_rate, beta_1=0.5), loss='binary_crossentropy')
return model

def _create_discriminator(self):
time_series_input = Input(shape=(self.window_length, self.input_dim))
x = Conv1D(filters=16, kernel_size=4, strides=2, padding='same')(time_series_input)
x = LeakyReLU(alpha=0.2)(x)
x = Conv1D(filters=32, kernel_size=4, strides=2, padding='same')(x)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.2)(x)
x = Conv1D(filters=64, kernel_size=4, strides=2, padding='same')(x)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.2)(x)
x = Flatten()(x)
fake = Dense(1, activation='sigmoid')(x)
month_label_output = Dense(12, activation='softmax')(x)
day_label_output = Dense(7, activation='softmax')(x)
model = Model(inputs=time_series_input, outputs=[fake, month_label_output, day_label_output])
model.compile(optimizer=Adam(lr=self.learning_rate, beta_1=0.5, decay=1e-6),
loss=['binary_crossentropy', 'categorical_crossentropy', 'categorical_crossentropy'])
return model

def _combine_generator_discriminator(self):
latent = Input(shape=(self.code_size,))
month_label_input = Input(shape=(1,), dtype='int32')
day_label_input = Input(shape=(1,), dtype='int32')
generated_data = self.generator([latent, month_label_input, day_label_input])
self.discriminator.trainable = False
fake, month_label_output, day_label_output = self.discriminator(generated_data)
combined = Model([latent, month_label_input, day_label_input], [fake, month_label_output, day_label_output])
combined.compile(optimizer=Adam(lr=self.learning_rate, beta_1=0.5, decay=1e-6),
loss=['binary_crossentropy', 'categorical_crossentropy', 'categorical_crossentropy'])
return combined

def train(self, x_train, x_val, num_epoch=5):
summary_writer = SummaryWriter()
self.gen_losses = []
self.dis_losses = []
self.mmd_losses = []

train_samples, month_label, day_label = x_train
num_train = train_samples.shape[0]
step = 0

index_array = np.arange(num_train)
validation_data = x_val

for epoch in range(num_epoch):
np.random.shuffle(index_array)
for i in tqdm(range(num_train // self.batch_size), desc='Epoch {}: '.format(epoch + 1)):
current_index = index_array[i * self.batch_size: (i + 1) * self.batch_size]
# get image
time_series_batch = train_samples[current_index]
# get label
month_label_batch = month_label[current_index]
day_label_batch = day_label[current_index]
# get noise
noise = np.random.normal(0., 1., [self.batch_size, self.code_size])
# get a batch of fake images
generated_time_series = self.generator.predict(
[noise, month_label_batch.reshape((-1, 1)), day_label_batch.reshape((-1, 1))], verbose=0)
soft_zero, soft_one = 0, 0.95

dis_loss_image = self.discriminator.train_on_batch(time_series_batch,
[np.array([soft_one] * self.batch_size),
to_categorical(month_label_batch, 12),
to_categorical(day_label_batch, 7)])
dis_loss_noise = self.discriminator.train_on_batch(
generated_time_series, [[soft_zero] * self.batch_size, to_categorical(month_label_batch, 12),
to_categorical(day_label_batch, 7)])
dis_loss = dis_loss_image + dis_loss_noise

dis_loss = np.sum(dis_loss)
# print(dis_loss)
noise = np.random.normal(0., 1., (2 * self.batch_size, self.code_size))
# get sample labels
month_sampled_labels = np.random.randint(0, 12, 2 * self.batch_size)
day_sampled_labels = np.random.randint(0, 7, 2 * self.batch_size)
trick = np.ones(2 * self.batch_size) * soft_one
gen_loss = self.discriminator_generator.train_on_batch(
[noise, month_sampled_labels, day_sampled_labels],
[trick, to_categorical(month_sampled_labels, 12), to_categorical(day_sampled_labels, 7)])

gen_loss = np.sum(gen_loss)

summary_writer.add_scalars('data/train_loss', {'gen': gen_loss,
'dis': dis_loss},
global_step=step)

step += 1

# sample a batch and calculate mmd loss with validation data
x_val = validation_data[0]
y_val = validation_data[1:3]
x_generated = self.generate(y_val)
mmd_loss_vec = np.zeros(shape=(x_val.shape[-1]))
for j in range(x_val.shape[-1]):
mmd_loss_vec[j] = mmd_loss(x_val[:, :, j], x_generated[:, :, j], weight=1.)
summary_writer.add_scalars('data/mmd_loss', {'load': mmd_loss_vec[0],
'pv': mmd_loss_vec[1]},
global_step=epoch)
self.save_weight()

def _generate(self, x):
return self.generator.predict(x)

def generate(self, labels):
num_samples = labels[0].shape[0]
z = np.random.normal(0, 1, size=[num_samples, self.code_size])
return self._generate([z] + labels)

def generate_by_date(self, num_samples, starting_date_str='2013-01-01'):
month_labels = np.zeros(shape=(num_samples))
day_labels = np.zeros(shape=(num_samples))
starting_date = datetime.datetime.strptime(starting_date_str, date_format_day)
for i in range(num_samples):
current_date = starting_date + datetime.timedelta(i)
month_labels[i] = current_date.month - 1
day_labels[i] = current_date.weekday()
return self.generate([month_labels, day_labels])

def save_weight(self):
self.generator.save_weights(self.weight_path + '_acgan_generator.h5')
self.discriminator.save_weights(self.weight_path + '_acgan_discriminator.h5')

def load_weight(self):
self.generator.load_weights(self.weight_path + '_acgan_generator.h5')
self.discriminator.load_weights(self.weight_path + '_acgan_discriminator.h5')
Loading

0 comments on commit f0d504f

Please sign in to comment.