forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add-whisper-conversion (huggingface#20600)
* add whisper conversion scrip * update conversion script * update arg names * fix missing encoder_ffn_dim * fixup * ast nits
- Loading branch information
1 parent
0577e79
commit 0c7d558
Showing
1 changed file
with
187 additions
and
0 deletions.
There are no files selected for viewing
187 changes: 187 additions & 0 deletions
187
src/transformers/models/whisper/convert_openai_to_hf.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
# Copyright 2022 The HuggingFace Inc. team and the OpenAI team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
import hashlib | ||
import os | ||
import urllib | ||
import warnings | ||
|
||
import torch | ||
from torch import nn | ||
from tqdm import tqdm | ||
|
||
from transformers import WhisperConfig, WhisperForConditionalGeneration | ||
|
||
|
||
_MODELS = { | ||
"tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", | ||
"tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", | ||
"base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", | ||
"base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", | ||
"small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", | ||
"small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", | ||
"medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", | ||
"medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", | ||
"large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", | ||
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", | ||
} | ||
|
||
|
||
def remove_ignore_keys_(state_dict): | ||
ignore_keys = ["layers", "blocks"] | ||
for k in ignore_keys: | ||
state_dict.pop(k, None) | ||
|
||
|
||
WHISPER_MAPPING = { | ||
"blocks": "layers", | ||
"mlp.0": "fc1", | ||
"mlp.2": "fc2", | ||
"mlp_ln": "final_layer_norm", | ||
"blocks": "layers", | ||
".attn.query": ".self_attn.q_proj", | ||
".attn.key": ".self_attn.k_proj", | ||
".attn.value": ".self_attn.v_proj", | ||
".attn_ln": ".self_attn_layer_norm", | ||
".attn.out": ".self_attn.out_proj", | ||
".cross_attn.query": ".encoder_attn.q_proj", | ||
".cross_attn.key": ".encoder_attn.k_proj", | ||
".cross_attn.value": ".encoder_attn.v_proj", | ||
".cross_attn_ln": ".encoder_attn_layer_norm", | ||
".cross_attn.out": ".encoder_attn.out_proj", | ||
"decoder.ln.": "decoder.layer_norm.", | ||
"encoder.ln.": "encoder.layer_norm.", | ||
"token_embedding": "embed_tokens", | ||
"encoder.positional_embedding": "encoder.embed_positions.weight", | ||
"decoder.positional_embedding": "decoder.embed_positions.weight", | ||
"ln_post": "layer_norm", | ||
} | ||
|
||
|
||
def rename_keys(s_dict): | ||
keys = list(s_dict.keys()) | ||
for key in keys: | ||
new_key = key | ||
for k, v in WHISPER_MAPPING.items(): | ||
if k in key: | ||
new_key = new_key.replace(k, v) | ||
|
||
print(f"{key} -> {new_key}") | ||
|
||
s_dict[new_key] = s_dict.pop(key) | ||
return s_dict | ||
|
||
|
||
def make_linear_from_emb(emb): | ||
vocab_size, emb_size = emb.weight.shape | ||
lin_layer = nn.Linear(vocab_size, emb_size, bias=False) | ||
lin_layer.weight.data = emb.weight.data | ||
return lin_layer | ||
|
||
|
||
def _download(url: str, root: str) -> bytes: | ||
os.makedirs(root, exist_ok=True) | ||
filename = os.path.basename(url) | ||
|
||
expected_sha256 = url.split("/")[-2] | ||
download_target = os.path.join(root, filename) | ||
|
||
if os.path.exists(download_target) and not os.path.isfile(download_target): | ||
raise RuntimeError(f"{download_target} exists and is not a regular file") | ||
|
||
if os.path.isfile(download_target): | ||
model_bytes = open(download_target, "rb").read() | ||
if hashlib.sha256(model_bytes).hexdigest() == expected_sha256: | ||
return model_bytes | ||
else: | ||
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") | ||
|
||
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: | ||
with tqdm( | ||
total=int(source.info().get("Content-Length")), ncols=80, unit="iB", unit_scale=True, unit_divisor=1024 | ||
) as loop: | ||
while True: | ||
buffer = source.read(8192) | ||
if not buffer: | ||
break | ||
|
||
output.write(buffer) | ||
loop.update(len(buffer)) | ||
|
||
model_bytes = open(download_target, "rb").read() | ||
if hashlib.sha256(model_bytes).hexdigest() != expected_sha256: | ||
raise RuntimeError( | ||
"Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." | ||
) | ||
|
||
return model_bytes | ||
|
||
|
||
def convert_openai_whisper_to_tfms(checkpoint_path, pytorch_dump_folder_path): | ||
if ".pt" not in checkpoint_path: | ||
original_checkpoint = _download(_MODELS[checkpoint_path]) | ||
else: | ||
original_checkpoint = torch.load(checkpoint_path, map_location="cpu") | ||
dimensions = original_checkpoint["dims"] | ||
state_dict = original_checkpoint["model_state_dict"] | ||
proj_out_weights = state_dict["decoder.token_embedding.weight"] | ||
remove_ignore_keys_(state_dict) | ||
rename_keys(state_dict) | ||
tie_embeds = True | ||
ffn_dim = state_dict["decoder.layers.0.fc1.weight"].shape[0] | ||
|
||
config = WhisperConfig( | ||
vocab_size=dimensions["n_vocab"], | ||
encoder_ffn_dim=ffn_dim, | ||
decoder_ffn_dim=ffn_dim, | ||
num_mel_bins=dimensions["n_mels"], | ||
d_model=dimensions["n_audio_state"], | ||
max_target_positions=dimensions["n_text_ctx"], | ||
encoder_layers=dimensions["n_audio_layer"], | ||
encoder_attention_heads=dimensions["n_audio_head"], | ||
decoder_layers=dimensions["n_text_layer"], | ||
decoder_attention_heads=dimensions["n_text_state"], | ||
max_source_positions=dimensions["n_audio_ctx"], | ||
) | ||
|
||
model = WhisperForConditionalGeneration(config) | ||
missing, unexpected = model.model.load_state_dict(state_dict, strict=False) | ||
if len(missing) > 0 and not set(missing) <= set( | ||
[ | ||
"encoder.embed_positions.weights", | ||
"decoder.embed_positions.weights", | ||
] | ||
): | ||
raise ValueError( | ||
"Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," | ||
f" but all the following weights are missing {missing}" | ||
) | ||
|
||
if tie_embeds: | ||
model.proj_out = make_linear_from_emb(model.model.decoder.embed_tokens) | ||
else: | ||
model.proj_out.weight.data = proj_out_weights | ||
|
||
model.save_pretrained(pytorch_dump_folder_path) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
# # Required parameters | ||
parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") | ||
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") | ||
args = parser.parse_args() | ||
|
||
convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path) |