Skip to content

Commit

Permalink
feat: update countries.json and add source information
Browse files Browse the repository at this point in the history
partially resolves #15
also removes reference to non-existent climate.json in SOURCES.md
  • Loading branch information
dsmedia committed Aug 1, 2024
1 parent 7abd9eb commit 0a426c2
Show file tree
Hide file tree
Showing 3 changed files with 156 additions and 3 deletions.
23 changes: 21 additions & 2 deletions SOURCES.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,13 +45,32 @@ The caption of the original 1951 [visualization](https://graphicdesignarchives.o

http://lib.stat.cmu.edu/datasets/

## `climate.json`

## `co2-concentration.csv`

https://scrippsco2.ucsd.edu/data/atmospheric_co2/primary_mlo_co2_record but modified to only include date, CO2, seasonally adjusted CO2 and only include rows with valid data.

## `countries.json`
### Source
- **Original Data**: [Gapminder Foundation](https://www.gapminder.org/)
- **URLs**:
- Life Expectancy (v14): [Data](https://docs.google.com/spreadsheets/d/1RehxZjXd7_rG8v2pJYV6aY0J3LAsgUPDQnbY4dRdiSs/edit?gid=176703676#gid=176703676) | [Reference](https://www.gapminder.org/data/documentation/gd004/)
- Fertility (v14): [Data](https://docs.google.com/spreadsheets/d/1aLtIpAWvDGGa9k2XXEz6hZugWn0wCd5nmzaRPPjbYNA/edit?gid=176703676#gid=176703676) | [Reference](https://www.gapminder.org/data/documentation/gd008/)

- **Date Accessed**: July 31, 2024
- **License**: Creative Commons Attribution 4.0 International (CC BY 4.0) | [Reference](https://www.gapminder.org/free-material/)

### Description
This dataset combines key demographic indicators (life expectancy at birth and fertility rate measured as babies per woman) for various countries from 1955 to 2000 at 5-year intervals. It includes both current values and adjacent time period values (previous and next) for each indicator. Gapminder's [data documentation](https://www.gapminder.org/data/documentation/) notes that its philosophy is to fill data gaps with estimates and use current geographic boundaries for historical data. Gapminder states that it aims to "show people the big picture" rather than support detailed numeric analysis.

#### Columns:
1. `year` (type: integer): Years from 1955 to 2000 at 5-year intervals
2. `country` (type: string): Name of the country
3. `fertility` (type: float): Fertility rate (average number of children per woman) for the given year
4. `life_expect` (type: float): Life expectancy in years for the given year
5. `p_fertility` (type: float): Fertility rate for the previous 5-year interval
6. `n_fertility` (type: float): Fertility rate for the next 5-year interval
7. `p_life_expect` (type: float): Life expectancy for the previous 5-year interval
8. `n_life_expect` (type: float): Life expectancy for the next 5-year interval

## `crimea.json`

Expand Down
2 changes: 1 addition & 1 deletion data/countries.json

Large diffs are not rendered by default.

134 changes: 134 additions & 0 deletions scripts/update_countries_json.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
#!/usr/bin/env python3
"""
countries.json Dataset Updater
This script updates the countries.json file in the vega-datasets repository
in a manner consistent with a minor release. It fetches current data from
the source Google Sheets files, processes the data, and then filters the results to
match the countries and years in the existing dataset. To ensure reproducibility
and data consistency, the script fetches the existing countries.json dataset
from a specific commit.
Data sources:
- Google Sheets: Multiple sheets containing updated Gapminder data
- Vega-Datasets: Raw GitHub URL (commit: 05fcb7c07b1d76206856e75129fc1e79dc61735c)
Usage:
Place this script in the 'scripts' folder of the repository.
Run it to generate an updated 'countries.json' file in the 'data' folder.
Note:
The updated countries.json formatting includes spaces for readability.
The new source dataset has no data for Aruba and changes the country
name "Hong Kong" to "Hong Kong, China".
"""

import os
import json
import re
from typing import Tuple

import pandas as pd
import requests

# Define the desired time interval between data points
YEAR_INTERVAL = 5

def fetch_google_sheet(sheet_url: str) -> pd.DataFrame:
"""Fetch data from a Google Sheet and return a pandas DataFrame."""
key_match = re.search(r'/d/([a-zA-Z0-9-_]+)', sheet_url)
gid_match = re.search(r'gid=(\d+)', sheet_url)
if not (key_match and gid_match):
raise ValueError("Invalid Google Sheets URL")

sheet_key, gid = key_match.group(1), gid_match.group(1)
csv_export_url = f"https://docs.google.com/spreadsheets/d/{sheet_key}/export?format=csv&gid={gid}"
return pd.read_csv(csv_export_url)

def load_datasets() -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""Load datasets from Google Sheets and GitHub."""
urls = [
"https://docs.google.com/spreadsheets/d/1RehxZjXd7_rG8v2pJYV6aY0J3LAsgUPDQnbY4dRdiSs/edit?gid=176703676#gid=176703676", # life expectancy v14
"https://docs.google.com/spreadsheets/d/1aLtIpAWvDGGa9k2XXEz6hZugWn0wCd5nmzaRPPjbYNA/edit?gid=176703676#gid=176703676", # fertility v14
]
df_life, df_fertility = [fetch_google_sheet(url) for url in urls]

countries_url = "https://raw.githubusercontent.com/vega/vega-datasets/05fcb7c07b1d76206856e75129fc1e79dc61735c/data/countries.json"
response = requests.get(countries_url)
response.raise_for_status()
df_countries = pd.DataFrame(response.json())

return df_life, df_fertility, df_countries

def prepare_main_dataframe(df_life: pd.DataFrame, df_fertility: pd.DataFrame) -> pd.DataFrame:
"""Prepare and merge the main dataframe."""
df_main = df_life[['name', 'time', 'Life expectancy ']]
df_main = df_main.merge(df_fertility[['name', 'time', 'Babies per woman']], on=['name', 'time'])

df_main = df_main.rename(columns={
'name': 'country',
'time': 'year',
'Life expectancy ': 'life_expect',
'Babies per woman': 'fertility',
})

df_main['year'] = df_main['year'].astype(int)
df_main = df_main[df_main['year'].between(1955, 2000) & (df_main['year'] % YEAR_INTERVAL == 0)]
return df_main.sort_values(['country', 'year'])

def check_year_intervals(df: pd.DataFrame) -> None:
"""
Check if all intervals between consecutive years for each country are equal to YEAR_INTERVAL.
Raises a ValueError if any interval is not equal to YEAR_INTERVAL.
"""
for country in df['country'].unique():
country_data = df[df['country'] == country]
year_diffs = country_data['year'].diff().dropna()
if not all(year_diffs == YEAR_INTERVAL):
raise ValueError(f"Invalid year interval found for {country}. All intervals should be {YEAR_INTERVAL} years.")

def filter_and_process_data(df_main: pd.DataFrame, df_countries: pd.DataFrame) -> pd.DataFrame:
"""Filter and process the main dataframe."""
df_countries.loc[df_countries['country'] == 'Hong Kong', 'country'] = 'Hong Kong, China'
countries_in_original = set(df_countries['country'])
df_main = df_main[df_main['country'].isin(countries_in_original)].copy()

# Check year intervals before creating p_ and n_ columns
check_year_intervals(df_main)

df_main['_comment'] = ''
first_row = df_main.loc[df_main.groupby('country')['year'].idxmin()].iloc[0]
df_main.loc[first_row.name, '_comment'] = 'Data courtesy of Gapminder.org'

# Create p_ (previous) and n_ (next) columns for fertility and life_expect
# These columns contain values from the previous and next time points (YEAR_INTERVAL years apart)
for col in ['fertility', 'life_expect']:
df_main[f'n_{col}'] = df_main.groupby('country')[col].shift(-1)
df_main[f'p_{col}'] = df_main.groupby('country')[col].shift(1)

return df_main[['_comment', 'year', 'fertility', 'life_expect', 'p_fertility', 'n_fertility', 'p_life_expect', 'n_life_expect', 'country']]

def main():
"""Main function to execute the script."""
# Load datasets
df_life, df_fertility, df_countries = load_datasets()

# Prepare and process data
df_main = prepare_main_dataframe(df_life, df_fertility)
df_final = filter_and_process_data(df_main, df_countries)

# Convert to list of dictionaries
data_list = df_final.apply(lambda row: {k: v for k, v in row.items() if pd.notna(v) and not (k == '_comment' and v == '')}, axis=1).tolist()

# Save to file in the 'data' folder one level up from the script location
script_dir = os.path.dirname(os.path.abspath(__file__))
save_path = os.path.join(script_dir, '..', 'data', 'countries.json')
os.makedirs(os.path.dirname(save_path), exist_ok=True)

with open(save_path, 'w') as f:
json.dump(data_list, f) # add separators=(',', ':')) to match formatting of original version with no spaces

print(f"Updated countries.json has been saved to {save_path}")

if __name__ == "__main__":
main()

0 comments on commit 0a426c2

Please sign in to comment.