-
Notifications
You must be signed in to change notification settings - Fork 77
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add example code Signed-off-by: hlts2 <[email protected]> * execute search and getobject request to all vald clusters Signed-off-by: hlts2 <[email protected]> * fixed to send data to each cluster based on the dataset Signed-off-by: hlts2 <[email protected]> --------- Signed-off-by: hlts2 <[email protected]>
- Loading branch information
Showing
2 changed files
with
247 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,246 @@ | ||
// Copyright (C) 2019-2023 vdaas.org vald team <[email protected]> | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// https://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
package main | ||
|
||
import ( | ||
"context" | ||
"encoding/json" | ||
"flag" | ||
"log" | ||
"strings" | ||
"time" | ||
|
||
"github.com/kpango/fuid" | ||
"github.com/kpango/glg" | ||
"github.com/vdaas/vald-client-go/v1/payload" | ||
"github.com/vdaas/vald-client-go/v1/vald" | ||
"gonum.org/v1/hdf5" | ||
"google.golang.org/grpc" | ||
) | ||
|
||
const ( | ||
insertCount = 400 | ||
testCount = 20 | ||
) | ||
|
||
var ( | ||
datasetPath string | ||
grpcServerAddr string | ||
grpcServerAddrs []string | ||
indexingWaitSeconds uint | ||
) | ||
|
||
func init() { | ||
/** | ||
Path option specifies hdf file by path. Default value is `fashion-mnist-784-euclidean.hdf5`. | ||
Addr option specifies grpc server addresses. Default value is `127.0.0.1:8080`,`127.0.0.1:8081`,`127.0.0.1:8082`. | ||
Wait option specifies indexing wait time (in seconds). Default value is `60`. | ||
**/ | ||
flag.StringVar(&datasetPath, "path", "fashion-mnist-784-euclidean.hdf5", "dataset path") | ||
flag.StringVar(&grpcServerAddr, "addrs", "localhost:8080,localhost:8081,localhost:8082", "gRPC server addresses") | ||
flag.UintVar(&indexingWaitSeconds, "wait", 60, "indexing wait seconds") | ||
flag.Parse() | ||
grpcServerAddrs = strings.Split(grpcServerAddr, ",") | ||
} | ||
|
||
func main() { | ||
/** | ||
Gets training data, test data and ids based on the dataset path. | ||
the number of ids is equal to that of training dataset. | ||
**/ | ||
ids, train, test, err := load(datasetPath) | ||
if err != nil { | ||
glg.Fatal(err) | ||
} | ||
ctx := context.Background() | ||
|
||
// Creates Vald clients for connecting to Vald clusters. | ||
clients := make([]vald.Client, 0, len(grpcServerAddrs)) | ||
for _, addr := range grpcServerAddrs { | ||
conn, err := grpc.DialContext(ctx, addr, grpc.WithInsecure()) | ||
if err != nil { | ||
glg.Fatal(err) | ||
} | ||
defer conn.Close() | ||
|
||
// Creates Vald client for gRPC. | ||
clients = append(clients, vald.NewValdClient(conn)) | ||
} | ||
|
||
glg.Infof("Start Inserting %d training vector to Vald", insertCount) | ||
// Insert 400 example vectors into Vald cluster. | ||
for i := range ids[:insertCount] { | ||
// Calls `Insert` function of Vald client. | ||
// Sends set of vector and id to server via gRPC. | ||
_, err := clients[0].Insert(ctx, &payload.Insert_Request{ | ||
Vector: &payload.Object_Vector{ | ||
Id: ids[i], | ||
Vector: train[i], | ||
}, | ||
Config: &payload.Insert_Config{ | ||
SkipStrictExistCheck: true, | ||
}, | ||
}) | ||
if err != nil { | ||
glg.Fatal(err) | ||
} | ||
if i%10 == 0 { | ||
glg.Infof("Inserted: %d", i+10) | ||
} | ||
} | ||
glg.Info("Finish Inserting dataset. \n\n") | ||
|
||
// Vald starts indexing automatically after insert. It needs to wait until the indexing is completed before a search action is performed. | ||
wt := time.Duration(indexingWaitSeconds) * time.Second | ||
glg.Infof("Wait %s for indexing to finish", wt) | ||
time.Sleep(wt) | ||
|
||
/** | ||
Gets approximate vectors, which is based on the value of `SearchConfig`, from the indexed tree based on the training data. | ||
In this example, Vald gets 10 approximate vectors each search vector. | ||
**/ | ||
glg.Infof("Start searching %d times", testCount) | ||
for i, vec := range test[:testCount] { | ||
for j, client := range clients { | ||
// Send searching vector and configuration object to the Vald server via gRPC. | ||
res, err := client.Search(ctx, &payload.Search_Request{ | ||
Vector: vec, | ||
// Conditions for hitting the search. | ||
Config: &payload.Search_Config{ | ||
Num: 10, // the number of search results | ||
Radius: -1, // Radius is used to determine the space of search candidate radius for neighborhood vectors. -1 means infinite circle. | ||
Epsilon: 0.1, // Epsilon is used to determines how much to expand from search candidate radius. | ||
Timeout: 100000000, // Timeout is used for search time deadline. The unit is nano-seconds. | ||
}, | ||
}) | ||
if err != nil { | ||
glg.Fatal(err) | ||
} | ||
|
||
// NOTE: Search result may differ due to the indexing timing of each Vald cluster. | ||
b, _ := json.MarshalIndent(res.GetResults(), "", " ") | ||
glg.Infof("%s: %d - Results : %s\n\n", grpcServerAddrs[j], i+1, string(b)) | ||
} | ||
time.Sleep(1 * time.Second) | ||
} | ||
glg.Infof("Finish searching %d times", testCount) | ||
|
||
/** | ||
Gets the vector using inserted vector id from Vald cluster. | ||
**/ | ||
glg.Infof("Start getting %d times", insertCount) | ||
for i, id := range ids[:insertCount] { | ||
for j, client := range clients { | ||
vec, err := client.GetObject(ctx, &payload.Object_VectorRequest{ | ||
Id: &payload.Object_ID{ | ||
Id: id, | ||
}, | ||
}) | ||
if err != nil { | ||
log.Fatal(err) | ||
} | ||
glg.Infof("%s: %d - Result : %s", grpcServerAddrs[j], i+1, vec.GetId()) | ||
} | ||
} | ||
glg.Infof("Finish getting %d times", insertCount) | ||
|
||
glg.Info("Start removing vector") | ||
// Remove indexed 400 vectors from vald cluster. | ||
for i := range ids[:insertCount] { | ||
// Call `Remove` function of Vald client. | ||
// Sends id to server via gRPC. | ||
_, err := clients[0].Remove(ctx, &payload.Remove_Request{ | ||
Id: &payload.Object_ID{ | ||
Id: ids[i], | ||
}, | ||
}) | ||
if err != nil { | ||
glg.Fatal(err) | ||
} | ||
if i%10 == 0 { | ||
glg.Infof("Removed: %d", i+10) | ||
} | ||
} | ||
glg.Info("Finish removing vector") | ||
} | ||
|
||
// load function loads training and test vector from hdf file. The size of ids is same to the number of training data. | ||
// Each id, which is an element of ids, will be set a random number. | ||
func load(path string) (ids []string, train, test [][]float32, err error) { | ||
var f *hdf5.File | ||
f, err = hdf5.OpenFile(path, hdf5.F_ACC_RDONLY) | ||
if err != nil { | ||
return nil, nil, nil, err | ||
} | ||
defer f.Close() | ||
|
||
// readFn function reads vectors of the hierarchy with the given the name. | ||
readFn := func(name string) ([][]float32, error) { | ||
// Opens and returns a named Dataset. | ||
// The returned dataset must be closed by the user when it is no longer needed. | ||
d, err := f.OpenDataset(name) | ||
if err != nil { | ||
return nil, err | ||
} | ||
defer d.Close() | ||
|
||
// Space returns an identifier for a copy of the dataspace for a dataset. | ||
sp := d.Space() | ||
defer sp.Close() | ||
|
||
// SimpleExtentDims returns dataspace dimension size and maximum size. | ||
dims, _, _ := sp.SimpleExtentDims() | ||
row, dim := int(dims[0]), int(dims[1]) | ||
|
||
// Gets the stored vector. All are represented as one-dimensional arrays. | ||
// The type of the slice depends on your dataset. | ||
// For fashion-mnist-784-euclidean.hdf5, the datatype is float32. | ||
vec := make([]float32, sp.SimpleExtentNPoints()) | ||
if err := d.Read(&vec); err != nil { | ||
return nil, err | ||
} | ||
|
||
// Converts a one-dimensional array to a two-dimensional array. | ||
// Use the `dim` variable as a separator. | ||
vecs := make([][]float32, row) | ||
for i := 0; i < row; i++ { | ||
vecs[i] = make([]float32, dim) | ||
for j := 0; j < dim; j++ { | ||
vecs[i][j] = float32(vec[i*dim+j]) | ||
} | ||
} | ||
|
||
return vecs, nil | ||
} | ||
|
||
// Gets vector of `train` hierarchy. | ||
train, err = readFn("train") | ||
if err != nil { | ||
return nil, nil, nil, err | ||
} | ||
|
||
// Gets vector of `test` hierarchy. | ||
test, err = readFn("test") | ||
if err != nil { | ||
return nil, nil, nil, err | ||
} | ||
|
||
// Generate as many random ids for training vectors. | ||
ids = make([]string, 0, len(train)) | ||
for i := 0; i < len(train); i++ { | ||
ids = append(ids, fuid.String()) | ||
} | ||
|
||
return | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters