Skip to content

Commit

Permalink
sagemathgh-36313: tentative of random subset for random matrix
Browse files Browse the repository at this point in the history
    
trying to do something for sagemath#35664 ; not yet good

### 📝 Checklist

- [x] The title is concise, informative, and self-explanatory.
- [x] I have linked a relevant issue or discussion.
- [x] I have created tests covering the changes.
- [x] I have updated the documentation accordingly.
    
URL: sagemath#36313
Reported by: Frédéric Chapoton
Reviewer(s): David Coudert, Frédéric Chapoton
  • Loading branch information
Release Manager committed Oct 11, 2023
2 parents 2f1a76d + 1953d8f commit 1943799
Showing 1 changed file with 60 additions and 57 deletions.
117 changes: 60 additions & 57 deletions src/sage/matrix/special.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@
# (at your option) any later version.
# https://www.gnu.org/licenses/
# ****************************************************************************
from copy import copy

from sage.rings.ring import is_Ring
import sage.matrix.matrix_space as matrix_space
Expand All @@ -72,9 +73,8 @@
from sage.rings.rational_field import QQ
from sage.rings.integer import Integer
from sage.misc.misc_c import running_total
from copy import copy
from sage.misc.prandom import randint, shuffle
from .constructor import matrix

import sage.categories.pushout


Expand Down Expand Up @@ -2473,104 +2473,107 @@ def random_rref_matrix(parent, num_pivots):
TESTS:
Rank zero::
sage: random_matrix(QQ, 1, 1, algorithm='echelon_form', num_pivots=0)
[0]
Rank of a matrix must be an integer. ::
sage: random_matrix(QQ, 120, 56, algorithm='echelon_form', num_pivots=61/2)
Traceback (most recent call last):
...
TypeError: the number of pivots must be an integer.
TypeError: the number of pivots must be an integer
Matrices must be generated over exact fields. ::
sage: random_matrix(RR, 40, 88, algorithm='echelon_form', num_pivots=39)
Traceback (most recent call last):
...
TypeError: the base ring must be exact.
TypeError: the base ring must be exact
Matrices must have the number of pivot columns be less than or equal to the number of rows. ::
sage: C=random_matrix(ZZ, 6,4, algorithm='echelon_form', num_pivots=7); C
sage: C = random_matrix(ZZ, 6,4, algorithm='echelon_form', num_pivots=7); C
Traceback (most recent call last):
...
ValueError: number of pivots cannot exceed the number of rows or columns.
ValueError: number of pivots cannot exceed the number of rows or columns
Matrices must have the number of pivot columns be less than or equal to the number of columns. ::
sage: D=random_matrix(QQ, 1,3, algorithm='echelon_form', num_pivots=5); D
sage: D = random_matrix(QQ, 1,3, algorithm='echelon_form', num_pivots=5); D
Traceback (most recent call last):
...
ValueError: number of pivots cannot exceed the number of rows or columns.
ValueError: number of pivots cannot exceed the number of rows or columns
Matrices must have the number of pivot columns be greater than zero. ::
sage: random_matrix(QQ, 5, 4, algorithm='echelon_form', num_pivots=-1)
Traceback (most recent call last):
...
ValueError: the number of pivots must be zero or greater.
ValueError: the number of pivots must be zero or greater
AUTHOR:
Billy Wonderly (2010-07)
"""
import sage.probability.probability_distribution as pd
from sage.misc.prandom import randint

try:
num_pivots = ZZ(num_pivots)
except TypeError:
raise TypeError("the number of pivots must be an integer.")
raise TypeError("the number of pivots must be an integer")
if num_pivots < 0:
raise ValueError("the number of pivots must be zero or greater.")
raise ValueError("the number of pivots must be zero or greater")
ring = parent.base_ring()
if not ring.is_exact():
raise TypeError("the base ring must be exact.")
raise TypeError("the base ring must be exact")
num_row = parent.nrows()
num_col = parent.ncols()
if num_pivots > num_row or num_pivots > num_col:
raise ValueError("number of pivots cannot exceed the number of rows or columns.")
raise ValueError("number of pivots cannot exceed the number of rows or columns")

if num_pivots == 0:
return parent.zero()

one = ring.one()
# Create a matrix of the desired size to be modified and then returned.
return_matrix = copy(parent.zero_matrix())

# No harm if no pivots at all.
subset = list(range(1, num_col))
shuffle(subset)
pivots = [0] + sorted(subset[:num_pivots - 1])

# Use the list of pivot columns to set the pivot entries of the return_matrix to leading ones.
for pivot_row, pivot in enumerate(pivots):
return_matrix[pivot_row, pivot] = one
if ring is QQ or ring is ZZ:
# Keep track of the non-pivot columns by using the pivot_index, start at the first column to
# the right of the initial pivot column, go until the first column to the left of the next
# pivot column.
for pivot_index in range(num_pivots - 1):
for non_pivot_column_index in range(pivots[pivot_index] + 1, pivots[pivot_index + 1]):
entry_generator1 = pd.RealDistribution("beta", [6, 4])
# Experimental distribution used to generate the values.
for non_pivot_column_entry in range(pivot_index + 1):
sign1 = (2 * randint(0, 1) - 1)
return_matrix[non_pivot_column_entry, non_pivot_column_index] = sign1 * int(entry_generator1.get_random_element() * ((1 - non_pivot_column_entry / return_matrix.ncols()) * 7))
# Use index to fill entries of the columns to the right of the last pivot column.
for rest_non_pivot_column in range(pivots[num_pivots - 1] + 1, num_col):
entry_generator2 = pd.RealDistribution("beta", [2.6, 4])
# experimental distribution to generate small values.
for rest_entries in range(num_pivots):
sign2 = (2 * randint(0, 1) - 1)
return_matrix[rest_entries, rest_non_pivot_column] = sign2 * int(entry_generator2.get_random_element() * 5)
else:
one = ring.one()
# Create a matrix of the desired size to be modified and then returned.
return_matrix = copy(parent.zero_matrix())
pivots = [0] #Force first column to be a pivot. No harm if no pivots at all.
# Probability distribution for the placement of leading one's.
pivot_generator = pd.RealDistribution("beta", [1.6, 4.3])
while len(pivots) < num_pivots:
pivot_column = int(pivot_generator.get_random_element() * num_col)
if pivot_column not in pivots:
pivots.append(pivot_column)
pivots.sort()
pivot_row = 0
# Use the list of pivot columns to set the pivot entries of the return_matrix to leading ones.
while pivot_row < num_pivots:
return_matrix[pivot_row, pivots[pivot_row]] = one
pivot_row += 1
if ring is QQ or ring is ZZ:
# Keep track of the non-pivot columns by using the pivot_index, start at the first column to
# the right of the initial pivot column, go until the first column to the left of the next
# pivot column.
for pivot_index in range(num_pivots-1):
for non_pivot_column_index in range(pivots[pivot_index]+1, pivots[pivot_index+1]):
entry_generator1 = pd.RealDistribution("beta", [6, 4])
# Experimental distribution used to generate the values.
for non_pivot_column_entry in range(pivot_index+1):
sign1 = (2*randint(0,1)-1)
return_matrix[non_pivot_column_entry,non_pivot_column_index]=sign1*int(entry_generator1.get_random_element()*((1-non_pivot_column_entry/return_matrix.ncols())*7))
# Use index to fill entries of the columns to the right of the last pivot column.
for rest_non_pivot_column in range(pivots[num_pivots-1]+1,num_col):
entry_generator2=pd.RealDistribution("beta",[2.6,4])
# experimental distribution to generate small values.
for rest_entries in range(num_pivots):
sign2=(2*randint(0,1)-1)
return_matrix[rest_entries,rest_non_pivot_column]=sign2*int(entry_generator2.get_random_element()*5)
else:
for pivot_index in range(num_pivots-1):
for non_pivot_column_index in range(pivots[pivot_index]+1,pivots[pivot_index+1]):
for non_pivot_column_entry in range(pivot_index+1):
return_matrix[non_pivot_column_entry,non_pivot_column_index]=ring.random_element()
for rest_non_pivot_column in range(pivots[num_pivots-1]+1,num_col):
for rest_entries in range(num_pivots):
return_matrix[rest_entries,rest_non_pivot_column]=ring.random_element()
for pivot_index in range(num_pivots - 1):
for non_pivot_column_index in range(pivots[pivot_index] + 1, pivots[pivot_index + 1]):
for non_pivot_column_entry in range(pivot_index + 1):
return_matrix[non_pivot_column_entry, non_pivot_column_index] = ring.random_element()
for rest_non_pivot_column in range(pivots[num_pivots - 1] + 1, num_col):
for rest_entries in range(num_pivots):
return_matrix[rest_entries, rest_non_pivot_column] = ring.random_element()
return return_matrix


Expand Down Expand Up @@ -2692,7 +2695,7 @@ def random_echelonizable_matrix(parent, rank, upper_bound=None, max_tries=100):
sage: random_matrix(RR, 3, 3, algorithm='echelonizable', rank=2)
Traceback (most recent call last):
...
TypeError: the base ring must be exact.
TypeError: the base ring must be exact
Works for rank==1, too. ::
Expand Down

0 comments on commit 1943799

Please sign in to comment.