-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Challenge documentation transferred to repo
- Loading branch information
Showing
1 changed file
with
14 additions
and
241 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -554,250 +554,17 @@ <h2>Important Dates</h2> | |
|
||
<div id="challenge" class="container-md section-container"> | ||
<h2>BRAVO Challenge</h2> | ||
<p>In conjunction with the BRAVO workshop at ICCV'23, we are organizing a challenge on the robustness of | ||
autonomous driving in the open world. The 2023 BRAVO Challenge aims at benchmarking segmentation models | ||
<p>In conjunction with the <a href="https://uncertainty-cv.github.io/2024/">Workshop on Uncertainty | ||
Quantification for Computer Vision</a>, we are organizing a challenge on the robustness of | ||
autonomous driving in the open world. The 2024 BRAVO Challenge aims at benchmarking segmentation models | ||
on urban scenes undergoing diverse forms of natural degradation and realistic-looking synthetic | ||
corruptions. We offer two tracks for benchmarking segmentation models: (1) trained on a single dataset | ||
and (2) trained on multiple heterogeneous datasets.</p> | ||
corruptions.</p> | ||
|
||
<h3>General rules</h3> | ||
<ol> | ||
<li>Models in each track must be trained using only the datasets allowed for that track.</li> | ||
<li>It is strictly forbidden to employ generative models for synthetic data augmentation.</li> | ||
<li>All results must be reproducible. Participants must submit a white paper containing comprehensive | ||
technical details alongside their results. Participants must make models and inference code | ||
accessible.</li> | ||
</ol> | ||
|
||
<h3>Track 1 – Single-domain training</h3> | ||
<p>In this track, models must be trained exclusively on the published | ||
<a href="https://www.cityscapes-dataset.com/" target="_blank">Cityscapes dataset</a>. This track | ||
evaluates the | ||
robustness of models trained with limited supervision and geographical diversity when facing unexpected | ||
corruptions observed in real-world scenarios. | ||
</p> | ||
|
||
<p>The evaluation will be performed on the 19 semantic classes of Cityscapes. | ||
</p> | ||
|
||
<h3>Track 2 – Multi-domain training</h3> | ||
<p>In this track, the models may be trained over a mix of multiple datasets, whose choice is strictly | ||
limited to the list provided below, comprising both real and synthetic domains. This track aims to | ||
assess how fewer constraints on the training data can enhance robustness.</p> | ||
|
||
<p>The evaluation will be performed on the 19 semantic classes of | ||
<a href="https://www.cityscapes-dataset.com/" target="_blank">Cityscapes</a>. Participants may choose to | ||
maintain | ||
the label sets of each dataset or remap them to Cityscapes. | ||
</p> | ||
|
||
<p>Allowed training datasets for Track 2:</p> | ||
<ul> | ||
<li><a href="https://www.cityscapes-dataset.com/" target="_blank">Cityscapes</a></li> | ||
<li><a href="https://bdd-data.berkeley.edu/" target="_blank">BDD100k</a></li> | ||
<li><a href="https://www.mapillary.com/datasets" target="_blank">Mapillary Vistas</a></li> | ||
<li><a href="https://idd.insaan.iiit.ac.in/" target="_blank">India Driving Dataset</a></li> | ||
<li><a href="https://www.wilddash.cc/" target="_blank">WildDash 2</a></li> | ||
<li><a href="https://download.visinf.tu-darmstadt.de/data/from_games/" target="_blank">GTA5 Dataset</a> | ||
(synthetic)</li> | ||
<li><a href="https://www.vis.xyz/shift/" target="_blank">SHIFT Dataset</a> (synthetic)</li> | ||
</ul> | ||
|
||
<h3>BRAVO Dataset</h3> | ||
<p>We created the benchmark dataset with real captured images and realistic-looking augmented images, | ||
repurposing existing datasets and combining them with newly generated data. The benchmark dataset | ||
comprises images from <a href="https://acdc.vision.ee.ethz.ch/" target="_blank">ACDC</a>, | ||
<a href="https://segmentmeifyoucan.com/" target="_blank">SegmentMeIfYouCan</a>, | ||
<a href="https://arxiv.org/abs/2108.00968" target="_blank">Out-of-context Cityscapes</a>, and new | ||
synthetic data. | ||
</p> | ||
<p>Get the full benchmark dataset at the following link: | ||
<a href="https://drive.google.com/drive/u/4/folders/11-dnlbMjm8O_ynq1REuDYKOmHLqEhGYP" | ||
target="_blank">full BRAVO | ||
Dataset download link</a>. | ||
</p> | ||
<p>The dataset includes the following splits (with individual download links):</p> | ||
<p><b>bravo-synobjs:</b> augmented scenes with inpainted synthetic OOD objects. We augmented the | ||
validation images of Cityscapes and generated 656 images with 26 OOD objects. (<a | ||
href="https://drive.google.com/drive/u/4/folders/1KKt_25S69DBf8ZTxhOhELpLgS2gyyGnf" | ||
target="_blank">download | ||
link</a>)</p> | ||
</p> | ||
<p class="image-container"> | ||
<img src="images/bravobenchmark/synobjs/cheetah.png" alt="Image 1"> | ||
<img src="images/bravobenchmark/synobjs/chimpanzee.png" alt="Image 2"> | ||
<img src="images/bravobenchmark/synobjs/lion.png" alt="Image 3"> | ||
<img src="images/bravobenchmark/synobjs/panda.png" alt="Image 4"> | ||
<img src="images/bravobenchmark/synobjs/penguine.png" alt="Image 5"> | ||
</p> | ||
<p><b>bravo-synrain:</b> augmented scenes with synthesized raindrops on the camera lens. We | ||
augmented the validation images of Cityscapes and generated 500 images with raindrops. (<a | ||
href="https://drive.google.com/drive/u/4/folders/1onP6tUVSjV-qKWWLm6wiOZCB9U14_gQ6" | ||
target="_blank">download | ||
link</a>)</p> | ||
<p class="image-container"> | ||
<img src="images/bravobenchmark/synrain/rain1.png" alt="Image 1"> | ||
<img src="images/bravobenchmark/synrain/rain2.png" alt="Image 2"> | ||
<img src="images/bravobenchmark/synrain/rain3.png" alt="Image 3"> | ||
<img src="images/bravobenchmark/synrain/rain4.png" alt="Image 4"> | ||
<img src="images/bravobenchmark/synrain/rain5.png" alt="Image 5"> | ||
</p> | ||
<p><b>bravo-synflare:</b> augmented scenes with synthesized light flares. We augmented the | ||
validation images of Cityscapes and generated 308 images with random light flares. (<a | ||
href="https://drive.google.com/drive/u/4/folders/13EpBXUY8BChoqfMxR5JhiyhqrzqLAO2y" | ||
target="_blank">download | ||
link</a>)</p> | ||
<p class="image-container"> | ||
<img src="images/bravobenchmark/synflare/flare1.png" alt="Image 1"> | ||
<img src="images/bravobenchmark/synflare/flare2.png" alt="Image 2"> | ||
<img src="images/bravobenchmark/synflare/flare3.png" alt="Image 3"> | ||
<img src="images/bravobenchmark/synflare/flare4.png" alt="Image 4"> | ||
<img src="images/bravobenchmark/synflare/flare5.png" alt="Image 5"> | ||
</p> | ||
<p><b>bravo-outofcontext:</b> augmented scenes with random backgrounds. We augmented the | ||
validation images of Cityscapes and generated 329 images with random random backgrounds. (<a | ||
href="https://drive.google.com/drive/u/4/folders/1NoXqTQWxrj_yKMNRKLOd1rnn2TjqIaU5" | ||
target="_blank">download | ||
link</a>)</p> | ||
<p class="image-container"> | ||
<img src="images/bravobenchmark/synooc/ooc1.png" alt="Image 1"> | ||
<img src="images/bravobenchmark/synooc/ooc2.png" alt="Image 2"> | ||
<img src="images/bravobenchmark/synooc/ooc3.png" alt="Image 3"> | ||
<img src="images/bravobenchmark/synooc/ooc4.png" alt="Image 4"> | ||
<img src="images/bravobenchmark/synooc/ooc5.png" alt="Image 5"> | ||
</p> | ||
<p><b>bravo-ACDC:</b> real scenes captured in adverse weather conditions, i.e. fog, night, rain | ||
and snow. (<a href="https://drive.google.com/drive/u/4/folders/1IW6-Tdfk2At6CrIIrA-QJF6CEcHgqqha" | ||
target="_blank">download | ||
link</a> or directly from <a href="https://acdc.vision.ee.ethz.ch/download">ACDC | ||
website</a>)</p> | ||
<p class="image-container"> | ||
<img src="images/bravobenchmark/acdc/acdc1.png" alt="Image 1"> | ||
<img src="images/bravobenchmark/acdc/acdc2.png" alt="Image 2"> | ||
<img src="images/bravobenchmark/acdc/acdc3.png" alt="Image 3"> | ||
<img src="images/bravobenchmark/acdc/acdc4.png" alt="Image 4"> | ||
<img src="images/bravobenchmark/acdc/acdc5.png" alt="Image 5"> | ||
</p> | ||
<p><b>bravo-SMIYC:</b> real scenes featuring out-of-distribution (OOD) objects rarely encountered | ||
on the road. (<a href="https://drive.google.com/drive/u/4/folders/1XnC9_7RzwZCWaDpP3iETbGt7Yvmg0MOg" | ||
target="_blank">download | ||
link</a> or directly from <a href="https://segmentmeifyoucan.com/">SMIYC | ||
website</a>)</p> | ||
<p class="image-container"> | ||
<img src="images/bravobenchmark/smiyc/smiyc1.jpg" alt="Image 1"> | ||
<img src="images/bravobenchmark/smiyc/smiyc2.jpg" alt="Image 2"> | ||
<img src="images/bravobenchmark/smiyc/smiyc3.jpg" alt="Image 3"> | ||
<img src="images/bravobenchmark/smiyc/smiyc4.jpg" alt="Image 4"> | ||
<img src="images/bravobenchmark/smiyc/smiyc5.jpg" alt="Image 5"> | ||
</p> | ||
|
||
<h3>Metrics</h3> | ||
<p>For a comprehensive assessment of the robustness of various semantic segmentation models, we adopt the | ||
following metrics:</p> | ||
<ul> | ||
<li><em>mIoU</em>: mean Intersection Over Union, quantifying the degree of overlap between correct | ||
predictions and actual labels against the total number of true positives, false positives, and false | ||
negatives. Evaluated splits: bravo-ACDC, bravo-synrain, bravo-synflare, bravo-outofcontext.</li> | ||
|
||
<li><em>ECE</em>: Expected Calibration Error, measuring the expected difference between accuracy and | ||
predicted uncertainty. Evaluated splits: bravo-ACDC, bravo-synrain, bravo-synflare, | ||
bravo-outofcontext.</li> | ||
|
||
<li><em>AUPR-Success</em>: Area Under the Precision-Recall curve Error, computing the area under the | ||
Precision-Recall curve using semantic prediction successes as the positive class. Evaluated splits: | ||
bravo-ACDC, bravo-synrain, bravo-synflare, bravo-outofcontext. The evaluation code should resemble: | ||
<code>sklearn.metrics.precision_recall_curve(pred==label, conf)</code>. | ||
</li> | ||
|
||
<li><em>AUPR-Error</em>: Area Under the Precision-Recall curve Error, computing the area under the | ||
Precision-Recall curve using semantic prediction failures as the positive class. Evaluated splits: | ||
bravo-ACDC, bravo-synrain, bravo-synflare, bravo-outofcontext. The evaluation code should resemble: | ||
<code>sklearn.metrics.precision_recall_curve(pred!=label, -conf)</code>. | ||
</li> | ||
<p>For more information, please check the <a href="https://github.com/valeoai/bravo_challenge">BRAVO | ||
Challenge Repository</a> and the <a | ||
href="https://benchmarks.elsa-ai.eu/?ch=1&com=introduction">Challenge Task Website at | ||
ELLIS/ELSA</a>.</p> | ||
|
||
<li><em>AUROC-ood</em>: Area Under the ROC Curve, a threshold-free metric quantifying the probability | ||
that a randomly chosen certain example will be ranked higher than a randomly chosen uncertain one. | ||
Evaluated splits: bravo-ACDC, bravo-synrain, bravo-synflare, bravo-synobjs, bravo-SMIYC. The | ||
evaluation code should resemble: <code>sklearn.metrics.roc_curve(ood_label, -conf)</code>. | ||
</li> | ||
|
||
<li><em>AUPR-ood</em>: Area Under the ROC Curve, a threshold-free metric quantifying the probability | ||
that a randomly chosen certain example will be ranked higher than a randomly chosen uncertain one. | ||
Evaluated splits: bravo-ACDC, bravo-synrain, bravo-synflare, bravo-synobjs, bravo-SMIYC. The | ||
evaluation code should resemble: | ||
<code>sklearn.metrics.precision_recall_curve(ood_label, -conf)</code>. | ||
</li> | ||
|
||
<li><em>FPR@95TPR-ood</em>: measuring the False Positive Rate when setting the True Positive Rate to | ||
95%. Evaluated splits: bravo-ACDC, bravo-synrain, bravo-synflare, bravo-synobjs, bravo-SMIYC. | ||
</li> | ||
</ul> | ||
|
||
<h3>Benchmark server</h3> | ||
<p>We are excited to unveil the BRAVO Challenge as an initiative within | ||
<a href="https://www.elsa-ai.eu/" target="_blank">ELSA — European Lighthouse on Secure and Safe AI</a>, | ||
a network of excellence funded by the European Union. The BRAVO Challenge is officially featured on the | ||
<a href="https://benchmarks.elsa-ai.eu/" target="_blank">ELSA Benchmarks website</a> as | ||
the Autonomous Driving/Robust Perception task. | ||
</p> | ||
|
||
<!-- <p style="color:#FF0000">For the moment, we opt to the manual submission via email. Please directly contact | ||
us via [email protected] or [email protected]. To ensure that your results are available by | ||
the time of the workshop, please submit your entry no later than September 30th.</p> | ||
--> | ||
<p>Please refer to the <a href="https://benchmarks.elsa-ai.eu/?ch=1&com=introduction" target="_blank">task | ||
website</a> for detailed submission information on the submission format and schedule.</p> | ||
|
||
<h3>Submission format</h3> | ||
<ul> | ||
<li>A single tar archive with the same structure of the bravo dataset: | ||
<ul class="tree"> | ||
<li> | ||
bravo_ACDC | ||
<ul class="tree"> | ||
<li>fog</li> | ||
<li>night</li> | ||
<li>rain</li> | ||
<li>snow</li> | ||
</ul> | ||
</li> | ||
<li> | ||
bravo_synrain | ||
<ul class="tree"> | ||
<li>frankfurt</li> | ||
<li>lindau</li> | ||
<li>munster</li> | ||
</ul> | ||
</li> | ||
<li>...</li> | ||
</ul> | ||
</li> | ||
<li>For each input image "ori_name.png", we requires two corresponding files: "ori_name_pred.png" for | ||
the semantic prediction and "ori_name_conf.png" for the confidence level regarding the model's | ||
predictions."</li> | ||
<li>Semantic predictions <code>pred</code> must be 8-bit grayscale <code>.png</code> images | ||
(<code>numpy.uint8</code>). Predictions must be encoded in Cityscapes 19-class format, e.g., road | ||
should correspond to ID 0. List of 19 Cityscapes | ||
<code>['road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle','bicycle']</code>. | ||
Please refer to <a href="./files/cityscapes.json" target="_blank">cityscapes.json</a> for the | ||
19-class mapping. | ||
</li> | ||
<li>Confidence maps <code>conf</code> must be 16-bit grayscale <code>.png</code> <s>.webp</s> images | ||
(<code>numpy.uint16</code>), where a value of <code>0.0</code> corresponds to confidence | ||
<code>0</code> and a value of <code>65535</code> <s>100</s> | ||
corresponds to confidence <code>1.0</code>. The same confidence map <code>conf</code> is used for | ||
all metrics. | ||
The python code for saving confidence should resemble | ||
<code>cv2.imwrite(conf_webp_file, conf)</code> <s>[cv2.IMWRITE_WEBP_QUALITY, 100]</s> | ||
</li> | ||
<li>Example <a | ||
href="https://drive.google.com/file/d/14knXF7wIE4hTBOBZllX9QxaL610UF_hn/view?usp=drive_link" | ||
target="_blank">submission</a>. | ||
</li> | ||
</ul> | ||
|
||
<h3>Leaderboard</h3> | ||
<p style="color:#FF0000">Coming soon!</p> | ||
|
||
<h3>Acknowledgements</h3> | ||
<p>We extend our heartfelt gratitude to the authors of | ||
|
@@ -813,6 +580,12 @@ <h3>Acknowledgements</h3> | |
flares. All those people collectively contributed to creating BRAVO, a unified benchmark | ||
for robustness in autonomous driving. | ||
</p> | ||
<p>We are excited to unveil the BRAVO Challenge as an initiative within | ||
<a href="https://www.elsa-ai.eu/" target="_blank">ELSA — European Lighthouse on Secure and Safe AI</a>, | ||
a network of excellence funded by the European Union. The BRAVO Challenge is officially featured on the | ||
<a href="https://benchmarks.elsa-ai.eu/" target="_blank">ELSA Benchmarks website</a> as | ||
the Autonomous Driving/Robust Perception task. | ||
</p> | ||
</div> | ||
|
||
<div id="organizers" class="container-md section-container"> | ||
|