Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for local LLMs #29

Merged
merged 16 commits into from
Feb 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -131,3 +131,7 @@ dmypy.json
local/
*ipynb
query/


*.bin
*.gguf
20 changes: 20 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,26 @@ chem_model = ChemCrow(model="gpt-4-0613", temp=0.1, streaming=False)
chem_model.run("What is the molecular weight of tylenol?")
```

### 💻 Running using local LLMs.

ChemCrow also supports the use of local LLMs, powered by GPT4All, which can be run on a laptop.

A list of supported models is provided [here](https://gpt4all.io/index.html).

```python
from chemcrow.agents import ChemCrow

chem_model = ChemCrow(
model="./models/mistral-7b-instruct-v0.1.Q4_0.gguf",
tools_model="./models/mistral-7b-instruct-v0.1.Q4_0.gguf",
temp=0.1, verbose=False, max_tokens=100, n_ctx=2048
)
output = chem_model.run("What is the molecular weight of tylenol?")

>>> output
>>> The molecular weight of acetaminophen is 151.17 g/mol ...
```

## ✅ Citation
Bran, Andres M., et al. "ChemCrow: Augmenting large-language models with chemistry tools." arXiv preprint arXiv:2304.05376 (2023).

Expand Down
67 changes: 38 additions & 29 deletions chemcrow/agents/chemcrow.py
Original file line number Diff line number Diff line change
@@ -1,39 +1,46 @@
from typing import Optional

import langchain
import os
from dotenv import load_dotenv
from typing import Optional, Dict
import langchain
import nest_asyncio
from langchain import PromptTemplate, chains
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from pydantic import ValidationError
from rmrkl import ChatZeroShotAgent, RetryAgentExecutor

from langchain.llms import GPT4All

from .prompts import FORMAT_INSTRUCTIONS, QUESTION_PROMPT, REPHRASE_TEMPLATE, SUFFIX
from .tools import make_tools


def _make_llm(model, temp, api_key, streaming: bool = False):
def _make_llm(model, temp, verbose, api_key, max_tokens=1000, n_ctx=2048):
if model.startswith("gpt-3.5-turbo") or model.startswith("gpt-4"):
llm = langchain.chat_models.ChatOpenAI(
temperature=temp,
model_name=model,
request_timeout=1000,
streaming=streaming,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key=api_key,
)
elif model.startswith("text-"):
llm = langchain.OpenAI(
temperature=temp,
model_name=model,
streaming=streaming,
callbacks=[StreamingStdOutCallbackHandler()],
openai_api_key=api_key,
)
load_dotenv()
try:
llm = langchain.chat_models.ChatOpenAI(
temperature=temp,
model_name=model,
request_timeout=1000,
streaming=True if verbose else False,
callbacks=[StreamingStdOutCallbackHandler()] if verbose else [None],
openai_api_key = api_key
)
except:
raise ValueError("Invalid OpenAI API key")
elif os.path.exists(model):
ext = os.path.splitext(model)[-1].lower()
if ext == ".gguf":
# If GPT4All style weights
llm = GPT4All(model=model, max_tokens=max_tokens, verbose=False)
else:
raise ValueError(f"Found file: {model}, however only models with .gguf format are suported currently.")
else:
raise ValueError(f"Invalid model name: {model}")
return llm



class ChemCrow:
def __init__(
self,
Expand All @@ -44,21 +51,23 @@ def __init__(
max_iterations=40,
verbose=True,
streaming: bool = True,
openai_api_key: Optional[str] = None,
api_keys: dict = {},
openai_api_key: str = '',
api_keys: Dict[str, str] = {},
max_tokens: int = 1000, # Not required for using OpenAI's API
n_ctx: int = 2048
):
"""Initialize ChemCrow agent."""

load_dotenv()
try:
self.llm = _make_llm(model, temp, openai_api_key, streaming)
except ValidationError:
raise ValueError("Invalid OpenAI API key")
self.llm = _make_llm(model, temp, verbose, openai_api_key, max_tokens, n_ctx)

if tools is None:
api_keys["OPENAI_API_KEY"] = openai_api_key
tools_llm = _make_llm(tools_model, temp, openai_api_key, streaming)
tools = make_tools(tools_llm, api_keys=api_keys, verbose=verbose)
tools_llm = _make_llm(tools_model, temp, verbose, openai_api_key, max_tokens, n_ctx)
tools = make_tools(
tools_llm,
api_keys = api_keys,
verbose=verbose
)

# Initialize agent
self.agent_executor = RetryAgentExecutor.from_agent_and_tools(
Expand Down