-
Notifications
You must be signed in to change notification settings - Fork 62
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
91c86a1
commit 6d5f1ce
Showing
6 changed files
with
269 additions
and
884 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
# UForm Model Benchmarks | ||
|
||
## Accuracy | ||
|
||
### Embedding Models | ||
|
||
Few retrieval benchmarks exist for multimodal embeddings. | ||
The most famous ones for English are "MS-COCO" and "Flickr30k". | ||
Evaluating `uform-vl-english` model, one can expect the following numbers for search quality. | ||
|
||
| Dataset | Recall @ 1 | Recall @ 5 | Recall @ 10 | | ||
| :------- | ---------: | ---------: | ----------: | | ||
| Flickr | 0.727 | 0.915 | 0.949 | | ||
| MS-COCO¹ | 0.510 | 0.761 | 0.838 | | ||
|
||
For multilingual benchmarks, we've created the [`unum-cloud/coco-sm`](https://github.com/unum-cloud/coco-sm) repository². | ||
Evaluating the `unum-cloud/uform-vl-multilingual-v2` model, one can expect the following metrics for text-to-image search, compared against `xlm-roberta-base-ViT-B-32` [OpenCLIP](https://github.com/mlfoundations/open_clip) model. | ||
|
||
| Language | OpenCLIP @ 1 | UForm @ 1 | OpenCLIP @ 5 | UForm @ 5 | OpenCLIP @ 10 | UForm @ 10 | Speakers | | ||
| :-------- | -----------: | --------: | -----------: | --------: | ------------: | ---------: | -------: | | ||
| English 🇺🇸 | __37.8__ | 37.7 | 63.5 | __65.0__ | 73.5 | __75.9__ | 1'452 M | | ||
| Chinese 🇨🇳 | 27.3 | __32.2__ | 51.3 | __59.0__ | 62.1 | __70.5__ | 1'118 M | | ||
| Hindi 🇮🇳 | 20.7 | __31.3__ | 42.5 | __57.9__ | 53.7 | __69.6__ | 602 M | | ||
| Spanish 🇪🇸 | 32.6 | __35.6__ | 58.0 | __62.8__ | 68.8 | __73.7__ | 548 M | | ||
| Arabic 🇸🇦 | 22.7 | __31.7__ | 44.9 | __57.8__ | 55.8 | __69.2__ | 274 M | | ||
| French 🇫🇷 | 31.3 | __35.4__ | 56.5 | __62.6__ | 67.4 | __73.3__ | 274 M | | ||
|
||
|
||
<details> | ||
<summary>All languages.</summary> | ||
<br> | ||
|
||
| Language | OpenCLIP @ 1 | UForm @ 1 | OpenCLIP @ 5 | UForm @ 5 | OpenCLIP @ 10 | UForm @ 10 | Speakers | | ||
| :------------------- | -----------: | -----------: | -----------: | -----------: | ------------: | -----------: | -------: | | ||
| Arabic 🇸🇦 | 22.7 | __31.7__ | 44.9 | __57.8__ | 55.8 | __69.2__ | 274 M | | ||
| Armenian 🇦🇲 | 5.6 | __22.0__ | 14.3 | __44.7__ | 20.2 | __56.0__ | 4 M | | ||
| Chinese 🇨🇳 | 27.3 | __32.2__ | 51.3 | __59.0__ | 62.1 | __70.5__ | 1'118 M | | ||
| English 🇺🇸 | __37.8__ | 37.7 | 63.5 | __65.0__ | 73.5 | __75.9__ | 1'452 M | | ||
| French 🇫🇷 | 31.3 | __35.4__ | 56.5 | __62.6__ | 67.4 | __73.3__ | 274 M | | ||
| German 🇩🇪 | 31.7 | __35.1__ | 56.9 | __62.2__ | 67.4 | __73.3__ | 134 M | | ||
| Hebrew 🇮🇱 | 23.7 | __26.7__ | 46.3 | __51.8__ | 57.0 | __63.5__ | 9 M | | ||
| Hindi 🇮🇳 | 20.7 | __31.3__ | 42.5 | __57.9__ | 53.7 | __69.6__ | 602 M | | ||
| Indonesian 🇮🇩 | 26.9 | __30.7__ | 51.4 | __57.0__ | 62.7 | __68.6__ | 199 M | | ||
| Italian 🇮🇹 | 31.3 | __34.9__ | 56.7 | __62.1__ | 67.1 | __73.1__ | 67 M | | ||
| Japanese 🇯🇵 | 27.4 | __32.6__ | 51.5 | __59.2__ | 62.6 | __70.6__ | 125 M | | ||
| Korean 🇰🇷 | 24.4 | __31.5__ | 48.1 | __57.8__ | 59.2 | __69.2__ | 81 M | | ||
| Persian 🇮🇷 | 24.0 | __28.8__ | 47.0 | __54.6__ | 57.8 | __66.2__ | 77 M | | ||
| Polish 🇵🇱 | 29.2 | __33.6__ | 53.9 | __60.1__ | 64.7 | __71.3__ | 41 M | | ||
| Portuguese 🇵🇹 | 31.6 | __32.7__ | 57.1 | __59.6__ | 67.9 | __71.0__ | 257 M | | ||
| Russian 🇷🇺 | 29.9 | __33.9__ | 54.8 | __60.9__ | 65.8 | __72.0__ | 258 M | | ||
| Spanish 🇪🇸 | 32.6 | __35.6__ | 58.0 | __62.8__ | 68.8 | __73.7__ | 548 M | | ||
| Thai 🇹🇭 | 21.5 | __28.7__ | 43.0 | __54.6__ | 53.7 | __66.0__ | 61 M | | ||
| Turkish 🇹🇷 | 25.5 | __33.0__ | 49.1 | __59.6__ | 60.3 | __70.8__ | 88 M | | ||
| Ukranian 🇺🇦 | 26.0 | __30.6__ | 49.9 | __56.7__ | 60.9 | __68.1__ | 41 M | | ||
| Vietnamese 🇻🇳 | 25.4 | __28.3__ | 49.2 | __53.9__ | 60.3 | __65.5__ | 85 M | | ||
| | | | | | | | | | ||
| Mean | 26.5±6.4 | __31.8±3.5__ | 49.8±9.8 | __58.1±4.5__ | 60.4±10.6 | __69.4±4.3__ | - | | ||
| Google Translate | 27.4±6.3 | __31.5±3.5__ | 51.1±9.5 | __57.8±4.4__ | 61.7±10.3 | __69.1±4.3__ | - | | ||
| Microsoft Translator | 27.2±6.4 | __31.4±3.6__ | 50.8±9.8 | __57.7±4.7__ | 61.4±10.6 | __68.9±4.6__ | - | | ||
| Meta NLLB | 24.9±6.7 | __32.4±3.5__ | 47.5±10.3 | __58.9±4.5__ | 58.2±11.2 | __70.2±4.3__ | - | | ||
|
||
</details> | ||
|
||
### Generative Models | ||
|
||
| Model | LLM Size | SQA | MME | MMBench | Average¹ | | ||
| :------------------- | -------: | ---: | -----: | ------: | -------: | | ||
| UForm-Gen2-Qwen-500m | 0.5B | 45.5 | 880.1 | 42.0 | 29.31 | | ||
| MobileVLM v2 | 1.4B | 52.1 | 1302.8 | 57.7 | 36.81 | | ||
| LLaVA-Phi | 2.7B | 68.4 | 1335.1 | 59.8 | 42.95 | | ||
|
||
For captioning evaluation we measure CLIPScore and RefCLIPScore³. | ||
|
||
| Model | Size | Caption Length | CLIPScore | RefCLIPScore | | ||
| :---------------------------------- | ---: | -------------: | --------: | -----------: | | ||
| `llava-hf/llava-1.5-7b-hf` | 7B | Long | 0.878 | 0.529 | | ||
| `llava-hf/llava-1.5-7b-hf` | 7B | Short | 0.886 | 0.531 | | ||
| | | ||
| `Salesforce/instructblip-vicuna-7b` | 7B | Long | 0.902 | 0.534 | | ||
| `Salesforce/instructblip-vicuna-7b` | 7B | Short | 0.848 | 0.523 | | ||
| | | ||
| `unum-cloud/uform-gen` | 1.5B | Long | 0.847 | 0.523 | | ||
| `unum-cloud/uform-gen` | 1.5B | Short | 0.842 | 0.522 | | ||
| | | ||
| `unum-cloud/uform-gen-chat` | 1.5B | Long | 0.860 | 0.525 | | ||
| `unum-cloud/uform-gen-chat` | 1.5B | Short | 0.858 | 0.525 | | ||
|
||
Results for VQAv2 evaluation. | ||
|
||
| Model | Size | Accuracy | | ||
| :------------------------- | ---: | -------: | | ||
| `llava-hf/llava-1.5-7b-hf` | 7B | 78.5 | | ||
| `unum-cloud/uform-gen` | 1.5B | 66.5 | | ||
|
||
<br/> | ||
|
||
> ¹ Train split was in training data. <br/> | ||
> ² Lacking a broad enough evaluation dataset, we translated the [COCO Karpathy test split](https://www.kaggle.com/datasets/shtvkumar/karpathy-splits) with multiple public and proprietary translation services, averaging the scores across all sets, and breaking them down in the bottom section. <br/> | ||
> ³ We used `apple/DFN5B-CLIP-ViT-H-14-378` CLIP model. | ||
## Speed | ||
|
||
UForm comes pre-packaged with speed benchmarks for the models. | ||
|
||
```bash | ||
$ python python/scripts/bench_encoders.py --help | ||
usage: bench_encoders.py [-h] [--filter-out FILTER_OUT] [--batch-size BATCH_SIZE] | ||
|
||
options: | ||
-h, --help show this help message and exit | ||
--filter-out FILTER_OUT | ||
Filter out models, backends, or devices with a Regular Expression. | ||
--batch-size BATCH_SIZE | ||
Batch size for the benchmark. Batch size 1 measures latency. Large batch sizes may not fit on every GPU. | ||
``` | ||
|
||
Running that script for a fairly small batch size of 50 on an Nvidia H100 GPU and | ||
|
||
| Model Name | Device | Backend | Images Preprocessed/s | Images Encoded/s | Texts Preprocessed/s | Texts Encoded/s | | ||
| :--------------------------------------------- | :----- | :------ | --------------------: | :--------------- | :------------------- | :-------------- | | ||
| unum-cloud/uform3-image-text-english-base | cpu | torch | 23.03 | 76.57 | 15,978.03 | 562.28 | | ||
| unum-cloud/uform3-image-text-english-base | cpu | onnx | 23.11 | 77.75 | 13,880.27 | 1,067.40 | | ||
| unum-cloud/uform3-image-text-english-base | cuda | torch | 22.87 | 1,060.40 | 12,348.94 | 13,242.83 | | ||
| unum-cloud/uform3-image-text-english-large | cpu | torch | 22.41 | 10.84 | 13,350.45 | 145.12 | | ||
| unum-cloud/uform3-image-text-english-large | cpu | onnx | 23.13 | 19.60 | 18,031.85 | 960.09 | | ||
| unum-cloud/uform3-image-text-english-large | cuda | torch | 22.78 | 244.86 | 13,226.40 | 10,204.04 | | ||
| unum-cloud/uform3-image-text-english-small | cpu | torch | 20.08 | 71.68 | 12,147.05 | 249.63 | | ||
| unum-cloud/uform3-image-text-english-small | cpu | onnx | 22.84 | 195.27 | 13,636.99 | 1,385.25 | | ||
| unum-cloud/uform3-image-text-english-small | cuda | torch | 22.63 | 2,662.16 | 14,731.18 | 14,694.87 | | ||
| unum-cloud/uform3-image-text-multilingual-base | cpu | torch | 22.98 | 64.28 | 10,129.27 | 209.76 | | ||
| unum-cloud/uform3-image-text-multilingual-base | cpu | onnx | 23.06 | 66.81 | 8,963.13 | 1,104.32 | | ||
| unum-cloud/uform3-image-text-multilingual-base | cuda | torch | 22.88 | 1,051.95 | 15,639.72 | 12,416.12 | | ||
|
||
If you are interested in performance numbers on consumer grade hardware, compared to third-party models, here are some rough estimates. | ||
On Nvidia RTX 3090: | ||
|
||
| Model | Multilingual | Speed | Speedup | | ||
| :----------------------------------------------- | -----------: | ---------------------: | ---------: | | ||
| `bert-base-uncased` | No | 1'612 sequences/second | | | ||
| `distilbert-base-uncased` | No | 3'174 sequences/second | x 1.96 | | ||
| `sentence-transformers/all-MiniLM-L12-v2` | __Yes__ | 3'604 sequences/second | x 2.24 | | ||
| `unum-cloud/uform3-image-text-multilingual-base` | __Yes__ | 6'809 sequences/second | __x 4.22__ | | ||
|
||
On Nvidia RTX 3090, the following performance is expected on text token generation using `float16`, equivalent PyTorch settings, and greedy decoding. | ||
|
||
| Model | Size | Speed | Speedup | | ||
| :---------------------------------- | ---: | ------------------: | --------: | | ||
| `llava-hf/llava-1.5-7b-hf` | 7B | ~ 40 tokens/second | | | ||
| `Salesforce/instructblip-vicuna-7b` | 7B | ~ 40 tokens/second | | | ||
| `unum-cloud/uform-gen` | 1.5B | ~ 140 tokens/second | __x 3.5__ | | ||
|
||
Given the small size of the model it also work well on mobile devices. | ||
On Apple M2 Arm chips the energy efficiency of inference can exceed that of the RTX 3090 GPU and other Ampere-generation cards. | ||
|
||
| Device | Speed | Device TDP | Efficiency | | ||
| :--------------------- | ------------------: | ---------: | ----------------: | | ||
| Nvidia RTX 3090 | ~ 140 tokens/second | < 350W | 0.40 tokens/joule | | ||
| Apple M2 Pro unplugged | ~ 19 tokens/second | < 20W | 0.95 tokens/joule | | ||
| Apple M2 Max unplugged | ~ 38 tokens/second | < 36W | 1.06 tokens/joule | | ||
| Apple M2 Max plugged | ~ 56 tokens/second | < 89W | 0.63 tokens/joule | |
Oops, something went wrong.