Skip to content

Commit

Permalink
Include calculated error in calibrator logs
Browse files Browse the repository at this point in the history
Add calibrator run parameter log_errors that
allows to append errors calculated during calibration.

Calibration log table is sorted so that best
techniques are on the top of the table.

Fixes #2014
  • Loading branch information
kozhukalov committed Oct 4, 2023
1 parent 0c0b7a0 commit 221924d
Show file tree
Hide file tree
Showing 2 changed files with 55 additions and 21 deletions.
1 change: 1 addition & 0 deletions AUTHORS
Original file line number Diff line number Diff line change
Expand Up @@ -52,3 +52,4 @@ Preksha Naik
Abdulrahman Sahmoud
Mohammad Zuhair Khan
Brian Goldsmith
Vladimir Kozhukalov
75 changes: 54 additions & 21 deletions mitiq/calibration/calibrator.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
import warnings
from itertools import product
from typing import (
Any,
Callable,
Dict,
Iterator,
Expand Down Expand Up @@ -72,17 +73,28 @@ def add_result(
self.noisy[strategy.id, problem.id] = noisy_val
self.ideal[strategy.id, problem.id] = ideal_val

def _get_performance_symbol(
def _get_performance(
self, strategy_id: int, problem_id: int
) -> str:
"""Returns ✔ the strategy performed better than no mitigation on this
problem, and ✘ otherwise."""
) -> Tuple[str, float, float]:
"""Get performance symbol and errors.
Returns:
A performance tuple comprising:
- performance symbol either ✔ or ✘ depending
on whether mitigation technique works well or not.
It considered to work well if the mitigated error is less
than the noisy error.
- the absolute value of the noisy error
- the absolute value of the mitigated error
"""
mitigated = self.mitigated[strategy_id, problem_id]
noisy = self.noisy[strategy_id, problem_id]
ideal = self.ideal[strategy_id, problem_id]
mitigation_worked = abs(ideal - mitigated) < abs(ideal - noisy)
performance = "✔" if mitigation_worked else "✘"
return performance
mitigated_error = abs(ideal - mitigated)
noisy_error = abs(ideal - noisy)
mitigation_worked = mitigated_error < noisy_error
performance_symbol = "✔" if mitigation_worked else "✘"
return performance_symbol, noisy_error, mitigated_error

def unique_techniques(self) -> Set[MitigationTechnique]:
"""Returns the unique mitigation techniques used across this
Expand All @@ -91,24 +103,34 @@ def unique_techniques(self) -> Set[MitigationTechnique]:

def _technique_results(
self, technique: MitigationTechnique
) -> Iterator[Tuple[BenchmarkProblem, Strategy, str]]:
) -> Iterator[Tuple[BenchmarkProblem, Strategy, str, float, float]]:
"""Yields the results from this collection of experiment results,
limited to a specific technique."""
for strategy, problem in product(self.strategies, self.problems):
if strategy.technique is technique:
performance = self._get_performance_symbol(
performance_symbol, nerr, merr = self._get_performance(
strategy.id, problem.id
)
yield problem, strategy, performance
yield problem, strategy, performance_symbol, nerr, merr

def log_technique(self, technique: MitigationTechnique) -> str:
def log_technique(
self, technique: MitigationTechnique, log_errors: bool = False
) -> str:
"""Creates a table displaying all results of a given mitigation
technique."""
table = []
for problem, strategy, performance in self._technique_results(
technique
):
row = [performance, problem.type, technique.name]
table: List[List[Union[str, float]]] = []
for (
problem,
strategy,
performance_symbol,
nerr,
merr,
) in self._technique_results(technique):
row: List[Union[str, float]] = [
performance_symbol,
problem.type,
technique.name,
]
summary_dict = strategy.to_pretty_dict()
if strategy.technique is MitigationTechnique.ZNE:
row.extend(
Expand All @@ -125,9 +147,17 @@ def log_technique(self, technique: MitigationTechnique) -> str:
summary_dict["representation_function"],
]
)

row.extend([nerr, merr])
table.append(row)

def _sort_best_perf(row: List[Any]) -> float:
return row[-1] - row[-2]

table.sort(key=_sort_best_perf)

if not log_errors:
table = [row[:-2] for row in table]

if technique is MitigationTechnique.ZNE:
headers = [
"performance",
Expand All @@ -146,15 +176,18 @@ def log_technique(self, technique: MitigationTechnique) -> str:
"noise representation",
]

if log_errors:
headers.extend(["noisy error", "mitigated error"])

return tabulate(table, headers, tablefmt="simple_grid")

def log_results(self) -> None:
def log_results(self, log_errors: bool = False) -> None:
"""Log results from entire calibration run. Logging is performed on
each mitigation technique individually to avoid confusion when many
techniques are used."""
for mitigation_technique in self.unique_techniques():
print(f"{mitigation_technique.name} results:")
print(self.log_technique(mitigation_technique))
print(self.log_technique(mitigation_technique, log_errors))
print()

def is_missing_data(self) -> bool:
Expand Down Expand Up @@ -279,7 +312,7 @@ def get_cost(self) -> Dict[str, int]:
"ideal_executions": ideal,
}

def run(self, log: bool = False) -> None:
def run(self, log: bool = False, log_errors: bool = False) -> None:
"""Runs all the circuits required for calibration."""
if not self.results.is_missing_data():
self.results.reset_data()
Expand Down Expand Up @@ -311,7 +344,7 @@ def run(self, log: bool = False) -> None:
self.results.ensure_full()

if log:
self.results.log_results()
self.results.log_results(log_errors)

def best_strategy(self) -> Strategy:
"""Finds the best strategy by using the parameters that had the
Expand Down

0 comments on commit 221924d

Please sign in to comment.