This is the official implementation for the paper SoK: Vehicle Orientation Representations for Deep Rotation Estimation
Install required packages via conda
# create conda environment based on yml file
conda env update --file environment.yml
# activate conda environment
conda activate KITTI-Orientation
Clone git repo:
git clone [email protected]:umd-fire-coml/KITTI-orientation-learning.git
Check training.sh for example training script
Training parameters can be configured using cmd arguments
- --predict: Specify prediction target. Options are rot-y, alpha
- --converter: Specify prediction method. Options are alpha, rot-y, tricosine, multibin, voting-bin, single-bin
- --kitti_dir: path to kitti dataset directory. Its subdirectory should have training/ and testing/ Default path is dataset/
- --training_record: root directory of all training record, parent of weights and logs directory. Default path is training_record
- --resume: Resume from previous training under training_record directory
- --add_pos_enc: Add positional encoding to input
- --add_depth_map: Add depth map information to input
For all the training parameter setup, please using
python3 model/training.py -h
Exp ID | Target | Loss Functions | Additional Inputs | Accuracy (%) |
---|---|---|---|---|
E1 | rot-y | L2 Loss | - | 90.490 |
E2 | rot-y | Angle Loss | - | 89.052 |
E3 | alpha | L2 Loss | - | 90.132 |
E4 | Single Bin | L2 Loss | - | 94.815 |
E5 | Single Bin | L2 Loss | Pos Enc | 94.277 |
E6 | Single Bin | L2 Loss | Dep Map | 93.952 |
E7 | Voting Bins (4-Bin) | L2 Loss | - | 93.609 |
E8 | Tricosine | L2 Loss | - | 94.249 |
E9 | Tricosine | L2 Loss | Pos Enc | 94.351 |
E10 | Tricosine | L2 Loss | Dep Map | 94.384 |
E11 | 2 Conf Bins | L2(Bins,Confs) | - | 83.304 |
E12 | 4 Conf Bins | L2(Bins,Confs) | - | 88.071 |