Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update --cache disk deprecate *_npy/ dirs #6876

Merged
merged 12 commits into from
Mar 6, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 38 additions & 38 deletions utils/datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -407,19 +407,19 @@ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, r
# f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
else:
raise Exception(f'{prefix}{p} does not exist')
self.img_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
assert self.img_files, f'{prefix}No images found'
assert self.im_files, f'{prefix}No images found'
except Exception as e:
raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}')

# Check cache
self.label_files = img2label_paths(self.img_files) # labels
self.label_files = img2label_paths(self.im_files) # labels
cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
try:
cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
assert cache['version'] == self.cache_version # same version
assert cache['hash'] == get_hash(self.label_files + self.img_files) # same hash
assert cache['hash'] == get_hash(self.label_files + self.im_files) # same hash
except Exception:
cache, exists = self.cache_labels(cache_path, prefix), False # cache

Expand All @@ -437,7 +437,7 @@ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, r
labels, shapes, self.segments = zip(*cache.values())
self.labels = list(labels)
self.shapes = np.array(shapes, dtype=np.float64)
self.img_files = list(cache.keys()) # update
self.im_files = list(cache.keys()) # update
self.label_files = img2label_paths(cache.keys()) # update
n = len(shapes) # number of images
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
Expand Down Expand Up @@ -466,7 +466,7 @@ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, r
s = self.shapes # wh
ar = s[:, 1] / s[:, 0] # aspect ratio
irect = ar.argsort()
self.img_files = [self.img_files[i] for i in irect]
self.im_files = [self.im_files[i] for i in irect]
self.label_files = [self.label_files[i] for i in irect]
self.labels = [self.labels[i] for i in irect]
self.shapes = s[irect] # wh
Expand All @@ -485,24 +485,20 @@ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, r
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride

# Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources)
self.imgs, self.img_npy = [None] * n, [None] * n
self.ims = [None] * n
self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
if cache_images:
if cache_images == 'disk':
self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy')
self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files]
self.im_cache_dir.mkdir(parents=True, exist_ok=True)
gb = 0 # Gigabytes of cached images
self.img_hw0, self.img_hw = [None] * n, [None] * n
results = ThreadPool(NUM_THREADS).imap(self.load_image, range(n))
self.im_hw0, self.im_hw = [None] * n, [None] * n
fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
pbar = tqdm(enumerate(results), total=n)
for i, x in pbar:
if cache_images == 'disk':
if not self.img_npy[i].exists():
np.save(self.img_npy[i].as_posix(), x[0])
gb += self.img_npy[i].stat().st_size
gb += self.npy_files[i].stat().st_size
else: # 'ram'
self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
gb += self.imgs[i].nbytes
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
gb += self.ims[i].nbytes
pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})'
pbar.close()

Expand All @@ -512,8 +508,8 @@ def cache_labels(self, path=Path('./labels.cache'), prefix=''):
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
with Pool(NUM_THREADS) as pool:
pbar = tqdm(pool.imap(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))),
desc=desc, total=len(self.img_files))
pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
desc=desc, total=len(self.im_files))
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
nm += nm_f
nf += nf_f
Expand All @@ -530,8 +526,8 @@ def cache_labels(self, path=Path('./labels.cache'), prefix=''):
LOGGER.info('\n'.join(msgs))
if nf == 0:
LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}')
x['hash'] = get_hash(self.label_files + self.img_files)
x['results'] = nf, nm, ne, nc, len(self.img_files)
x['hash'] = get_hash(self.label_files + self.im_files)
x['results'] = nf, nm, ne, nc, len(self.im_files)
x['msgs'] = msgs # warnings
x['version'] = self.cache_version # cache version
try:
Expand All @@ -543,7 +539,7 @@ def cache_labels(self, path=Path('./labels.cache'), prefix=''):
return x

def __len__(self):
return len(self.img_files)
return len(self.im_files)

# def __iter__(self):
# self.count = -1
Expand Down Expand Up @@ -622,17 +618,15 @@ def __getitem__(self, index):
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
img = np.ascontiguousarray(img)

return torch.from_numpy(img), labels_out, self.img_files[index], shapes
return torch.from_numpy(img), labels_out, self.im_files[index], shapes

def load_image(self, i):
# loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
im = self.imgs[i]
# Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i],
if im is None: # not cached in RAM
npy = self.img_npy[i]
if npy and npy.exists(): # load npy
im = np.load(npy)
if fn.exists(): # load npy
im = np.load(fn)
else: # read image
f = self.img_files[i]
im = cv2.imread(f) # BGR
assert im is not None, f'Image Not Found {f}'
h0, w0 = im.shape[:2] # orig hw
Expand All @@ -643,7 +637,13 @@ def load_image(self, i):
interpolation=cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA)
return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
else:
return self.imgs[i], self.img_hw0[i], self.img_hw[i] # im, hw_original, hw_resized
return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized

def cache_images_to_disk(self, i):
# Saves an image as an *.npy file for faster loading
f = self.npy_files[i]
if not f.exists():
np.save(f.as_posix(), cv2.imread(self.im_files[i]))

def load_mosaic(self, index):
# YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
Expand Down Expand Up @@ -777,16 +777,16 @@ def load_mosaic9(self, index):

@staticmethod
def collate_fn(batch):
img, label, path, shapes = zip(*batch) # transposed
im, label, path, shapes = zip(*batch) # transposed
for i, lb in enumerate(label):
lb[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
return torch.stack(im, 0), torch.cat(label, 0), path, shapes

@staticmethod
def collate_fn4(batch):
img, label, path, shapes = zip(*batch) # transposed
n = len(shapes) // 4
img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]

ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
Expand All @@ -800,13 +800,13 @@ def collate_fn4(batch):
else:
im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
img4.append(im)
im4.append(im)
label4.append(lb)

for i, lb in enumerate(label4):
lb[:, 0] = i # add target image index for build_targets()

return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4


# Ancillary functions --------------------------------------------------------------------------------------------------
Expand Down Expand Up @@ -999,12 +999,12 @@ def hub_ops(f, max_dim=1920):
'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
'per_class': (x > 0).sum(0).tolist()},
'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in
zip(dataset.img_files, dataset.labels)]}
zip(dataset.im_files, dataset.labels)]}

if hub:
im_dir = hub_dir / 'images'
im_dir.mkdir(parents=True, exist_ok=True)
for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.img_files), total=dataset.n, desc='HUB Ops'):
for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.im_files), total=dataset.n, desc='HUB Ops'):
pass

# Profile
Expand Down
2 changes: 1 addition & 1 deletion utils/loggers/wandb/wandb_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -403,7 +403,7 @@ def create_dataset_table(self, dataset: LoadImagesAndLabels, class_to_id: Dict[i
# TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
artifact = wandb.Artifact(name=name, type="dataset")
img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
img_files = tqdm(dataset.img_files) if not img_files else img_files
img_files = tqdm(dataset.im_files) if not img_files else img_files
for img_file in img_files:
if Path(img_file).is_dir():
artifact.add_dir(img_file, name='data/images')
Expand Down
2 changes: 1 addition & 1 deletion val.py
Original file line number Diff line number Diff line change
Expand Up @@ -297,7 +297,7 @@ def run(data,
pred = anno.loadRes(pred_json) # init predictions api
eval = COCOeval(anno, pred, 'bbox')
if is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
eval.evaluate()
eval.accumulate()
eval.summarize()
Expand Down