Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

EdgeTPU optimizations #6808

Merged
merged 9 commits into from
Mar 12, 2022
2 changes: 1 addition & 1 deletion export.py
Original file line number Diff line number Diff line change
Expand Up @@ -331,7 +331,7 @@ def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('Te
converter.target_spec.supported_types = []
converter.inference_input_type = tf.uint8 # or tf.int8
converter.inference_output_type = tf.uint8 # or tf.int8
converter.experimental_new_quantizer = False
converter.experimental_new_quantizer = True
f = str(file).replace('.pt', '-int8.tflite')

tflite_model = converter.convert()
Expand Down
10 changes: 6 additions & 4 deletions models/tf.py
Original file line number Diff line number Diff line change
Expand Up @@ -222,19 +222,21 @@ def call(self, inputs):
x.append(self.m[i](inputs[i]))
# x(bs,20,20,255) to x(bs,3,20,20,85)
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
x[i] = tf.transpose(tf.reshape(x[i], [-1, ny * nx, self.na, self.no]), [0, 2, 1, 3])
x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])

if not self.training: # inference
y = tf.sigmoid(x[i])
xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
xy = (y[..., 0:2] * 2 + grid) * self.stride[i] # xy
wh = y[..., 2:4] ** 2 * anchor_grid
# Normalize xywh to 0-1 to reduce calibration error
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
y = tf.concat([xy, wh, y[..., 4:]], -1)
z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))

return x if self.training else (tf.concat(z, 1), x)
return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1), x)

@staticmethod
def _make_grid(nx=20, ny=20):
Expand Down