Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Global export format sort #6182

Merged
merged 2 commits into from
Jan 4, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions detect.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,13 +15,13 @@
$ python path/to/detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s.mlmodel # CoreML (under development)
yolov5s.xml # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (under development)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow protobuf
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s.engine # TensorRT
"""

import argparse
Expand Down
148 changes: 74 additions & 74 deletions export.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,19 +2,19 @@
"""
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit

Format | Example | `--include ...` argument
Format | `export.py --include` | Model
--- | --- | ---
PyTorch | yolov5s.pt | -
TorchScript | yolov5s.torchscript | `torchscript`
ONNX | yolov5s.onnx | `onnx`
CoreML | yolov5s.mlmodel | `coreml`
OpenVINO | yolov5s_openvino_model/ | `openvino`
TensorFlow SavedModel | yolov5s_saved_model/ | `saved_model`
TensorFlow GraphDef | yolov5s.pb | `pb`
TensorFlow Lite | yolov5s.tflite | `tflite`
TensorFlow Edge TPU | yolov5s_edgetpu.tflite | `edgetpu`
TensorFlow.js | yolov5s_web_model/ | `tfjs`
TensorRT | yolov5s.engine | `engine`
PyTorch | - | yolov5s.pt
TorchScript | `torchscript` | yolov5s.torchscript
ONNX | `onnx` | yolov5s.onnx
OpenVINO | `openvino` | yolov5s_openvino_model/
TensorRT | `engine` | yolov5s.engine
CoreML | `coreml` | yolov5s.mlmodel
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
TensorFlow GraphDef | `pb` | yolov5s.pb
TensorFlow Lite | `tflite` | yolov5s.tflite
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov5s_web_model/

Usage:
$ python path/to/export.py --weights yolov5s.pt --include torchscript onnx coreml openvino saved_model tflite tfjs
Expand All @@ -23,13 +23,13 @@
$ python path/to/detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s.mlmodel # CoreML (under development)
yolov5s.xml # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (under development)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow protobuf
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s.engine # TensorRT

TensorFlow.js:
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
Expand Down Expand Up @@ -126,6 +126,23 @@ def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorst
LOGGER.info(f'{prefix} export failure: {e}')


def export_openvino(model, im, file, prefix=colorstr('OpenVINO:')):
# YOLOv5 OpenVINO export
try:
check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
import openvino.inference_engine as ie

LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
f = str(file).replace('.pt', '_openvino_model' + os.sep)

cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f}"
subprocess.check_output(cmd, shell=True)

LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
except Exception as e:
LOGGER.info(f'\n{prefix} export failure: {e}')


def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
# YOLOv5 CoreML export
ct_model = None
Expand All @@ -148,27 +165,57 @@ def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
return ct_model


def export_openvino(model, im, file, prefix=colorstr('OpenVINO:')):
# YOLOv5 OpenVINO export
def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
try:
check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
import openvino.inference_engine as ie
check_requirements(('tensorrt',))
import tensorrt as trt

LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
f = str(file).replace('.pt', '_openvino_model' + os.sep)
opset = (12, 13)[trt.__version__[0] == '8'] # test on TensorRT 7.x and 8.x
export_onnx(model, im, file, opset, train, False, simplify)
onnx = file.with_suffix('.onnx')
assert onnx.exists(), f'failed to export ONNX file: {onnx}'

cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f}"
subprocess.check_output(cmd, shell=True)
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
f = file.with_suffix('.engine') # TensorRT engine file
logger = trt.Logger(trt.Logger.INFO)
if verbose:
logger.min_severity = trt.Logger.Severity.VERBOSE

builder = trt.Builder(logger)
config = builder.create_builder_config()
config.max_workspace_size = workspace * 1 << 30

flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
network = builder.create_network(flag)
parser = trt.OnnxParser(network, logger)
if not parser.parse_from_file(str(onnx)):
raise RuntimeError(f'failed to load ONNX file: {onnx}')

inputs = [network.get_input(i) for i in range(network.num_inputs)]
outputs = [network.get_output(i) for i in range(network.num_outputs)]
LOGGER.info(f'{prefix} Network Description:')
for inp in inputs:
LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}')
for out in outputs:
LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}')

half &= builder.platform_has_fast_fp16
LOGGER.info(f'{prefix} building FP{16 if half else 32} engine in {f}')
if half:
config.set_flag(trt.BuilderFlag.FP16)
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
t.write(engine.serialize())
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')

except Exception as e:
LOGGER.info(f'\n{prefix} export failure: {e}')


def export_saved_model(model, im, file, dynamic,
tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
conf_thres=0.25, prefix=colorstr('TensorFlow saved_model:')):
# YOLOv5 TensorFlow saved_model export
conf_thres=0.25, prefix=colorstr('TensorFlow SavedModel:')):
# YOLOv5 TensorFlow SavedModel export
keras_model = None
try:
import tensorflow as tf
Expand Down Expand Up @@ -304,53 +351,6 @@ def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
LOGGER.info(f'\n{prefix} export failure: {e}')


def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
try:
check_requirements(('tensorrt',))
import tensorrt as trt

opset = (12, 13)[trt.__version__[0] == '8'] # test on TensorRT 7.x and 8.x
export_onnx(model, im, file, opset, train, False, simplify)
onnx = file.with_suffix('.onnx')
assert onnx.exists(), f'failed to export ONNX file: {onnx}'

LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
f = file.with_suffix('.engine') # TensorRT engine file
logger = trt.Logger(trt.Logger.INFO)
if verbose:
logger.min_severity = trt.Logger.Severity.VERBOSE

builder = trt.Builder(logger)
config = builder.create_builder_config()
config.max_workspace_size = workspace * 1 << 30

flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
network = builder.create_network(flag)
parser = trt.OnnxParser(network, logger)
if not parser.parse_from_file(str(onnx)):
raise RuntimeError(f'failed to load ONNX file: {onnx}')

inputs = [network.get_input(i) for i in range(network.num_inputs)]
outputs = [network.get_output(i) for i in range(network.num_outputs)]
LOGGER.info(f'{prefix} Network Description:')
for inp in inputs:
LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}')
for out in outputs:
LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}')

half &= builder.platform_has_fast_fp16
LOGGER.info(f'{prefix} building FP{16 if half else 32} engine in {f}')
if half:
config.set_flag(trt.BuilderFlag.FP16)
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
t.write(engine.serialize())
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')

except Exception as e:
LOGGER.info(f'\n{prefix} export failure: {e}')


@torch.no_grad()
def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
weights=ROOT / 'yolov5s.pt', # weights path
Expand Down Expand Up @@ -417,12 +417,12 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
export_torchscript(model, im, file, optimize)
if ('onnx' in include) or ('openvino' in include): # OpenVINO requires ONNX
export_onnx(model, im, file, opset, train, dynamic, simplify)
if 'openvino' in include:
export_openvino(model, im, file)
if 'engine' in include:
export_engine(model, im, file, train, half, simplify, workspace, verbose)
if 'coreml' in include:
export_coreml(model, im, file)
if 'openvino' in include:
export_openvino(model, im, file)

# TensorFlow Exports
if any(tf_exports):
Expand Down
Loading