Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Re-order plots.py to class-first #4595

Merged
merged 1 commit into from
Aug 29, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 26 additions & 24 deletions utils/plots.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,30 +45,8 @@ def hex2rgb(h): # rgb order (PIL)
colors = Colors() # create instance for 'from utils.plots import colors'


def hist2d(x, y, n=100):
# 2d histogram used in labels.png and evolve.png
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
return np.log(hist[xidx, yidx])


def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
from scipy.signal import butter, filtfilt

# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
def butter_lowpass(cutoff, fs, order):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
return butter(order, normal_cutoff, btype='low', analog=False)

b, a = butter_lowpass(cutoff, fs, order=order)
return filtfilt(b, a, data) # forward-backward filter


class Annotator:
# YOLOv5 PIL Annotator class
# YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=True):
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.'
self.pil = pil
Expand All @@ -79,9 +57,11 @@ def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=Tr
f = font_size or max(round(s * 0.035), 12)
try:
self.font = ImageFont.truetype(font, size=f)
except: # download TTF
except Exception as e: # download TTF if missing
print(f'WARNING: Annotator font {font} not found: {e}')
url = "https://github.com/ultralytics/yolov5/releases/download/v1.0/" + font
torch.hub.download_url_to_file(url, font)
print(f'Annotator font successfully downloaded from {url} to {font}')
self.font = ImageFont.truetype(font, size=f)
self.fh = self.font.getsize('a')[1] - 3 # font height
else: # use cv2
Expand Down Expand Up @@ -122,6 +102,28 @@ def result(self):
return np.asarray(self.im)


def hist2d(x, y, n=100):
# 2d histogram used in labels.png and evolve.png
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
return np.log(hist[xidx, yidx])


def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
from scipy.signal import butter, filtfilt

# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
def butter_lowpass(cutoff, fs, order):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
return butter(order, normal_cutoff, btype='low', analog=False)

b, a = butter_lowpass(cutoff, fs, order=order)
return filtfilt(b, a, data) # forward-backward filter


def output_to_target(output):
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
targets = []
Expand Down