Skip to content

Commit

Permalink
Default AutoBatch 0.8 fraction (#9212)
Browse files Browse the repository at this point in the history
  • Loading branch information
glenn-jocher authored Aug 29, 2022
1 parent 3c64d89 commit 91a81d4
Show file tree
Hide file tree
Showing 2 changed files with 2 additions and 2 deletions.
2 changes: 1 addition & 1 deletion hubconf.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbo
model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
if autoshape:
if model.pt and isinstance(model.model, ClassificationModel):
LOGGER.warning('WARNING: YOLOv5 v6.2 ClassificationModel is not yet AutoShape compatible. '
LOGGER.warning('WARNING: ⚠️ YOLOv5 v6.2 ClassificationModel is not yet AutoShape compatible. '
'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).')
else:
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
Expand Down
2 changes: 1 addition & 1 deletion utils/autobatch.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ def check_train_batch_size(model, imgsz=640, amp=True):
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size


def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
def autobatch(model, imgsz=640, fraction=0.8, batch_size=16):
# Automatically estimate best batch size to use `fraction` of available CUDA memory
# Usage:
# import torch
Expand Down

0 comments on commit 91a81d4

Please sign in to comment.