Skip to content

Commit

Permalink
Add --half support for FP16 CoreML exports with (#7446)
Browse files Browse the repository at this point in the history
* add fp16 for coreml using --half

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* Cleanup

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update export.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <[email protected]>
  • Loading branch information
3 people authored Apr 16, 2022
1 parent c9a3b14 commit 7926afc
Showing 1 changed file with 13 additions and 4 deletions.
17 changes: 13 additions & 4 deletions export.py
Original file line number Diff line number Diff line change
Expand Up @@ -186,7 +186,7 @@ def export_openvino(model, im, file, prefix=colorstr('OpenVINO:')):
LOGGER.info(f'\n{prefix} export failure: {e}')


def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
# YOLOv5 CoreML export
try:
check_requirements(('coremltools',))
Expand All @@ -197,6 +197,14 @@ def export_coreml(model, im, file, prefix=colorstr('CoreML:')):

ts = torch.jit.trace(model, im, strict=False) # TorchScript model
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
if bits < 32:
if platform.system() == 'Darwin': # quantization only supported on macOS
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
else:
print(f'{prefix} quantization only supported on macOS, skipping...')
ct_model.save(f)

LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
Expand Down Expand Up @@ -466,7 +474,8 @@ def run(

# Load PyTorch model
device = select_device(device)
assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
if half:
assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model
nc, names = model.nc, model.names # number of classes, class names

Expand All @@ -480,7 +489,7 @@ def run(
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection

# Update model
if half:
if half and not coreml:
im, model = im.half(), model.half() # to FP16
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
for k, m in model.named_modules():
Expand All @@ -506,7 +515,7 @@ def run(
if xml: # OpenVINO
f[3] = export_openvino(model, im, file)
if coreml:
_, f[4] = export_coreml(model, im, file)
_, f[4] = export_coreml(model, im, file, int8, half)

# TensorFlow Exports
if any((saved_model, pb, tflite, edgetpu, tfjs)):
Expand Down

0 comments on commit 7926afc

Please sign in to comment.