Skip to content

Commit

Permalink
Bug fix mAP0.5-0.95 (#6787)
Browse files Browse the repository at this point in the history
* Improve mAP0.5-0.95

Two changes provided
1. Added limit on the maximum number of detections for each image likewise pycocotools
2. Rework process_batch function

Changes #2 solved issue #4251
I also independently encountered the problem described in issue #4251 that the values for the same thresholds do not match when changing the limits in the torch.linspace function.
These changes solve this problem.

Currently during validation yolov5x.pt model the following results were obtained:
from yolov5 validation
               Class     Images     Labels          P          R     [email protected] [email protected]:.95: 100%|██████████| 157/157 [01:07<00:00,  2.33it/s]
                 all       5000      36335      0.743      0.626      0.682      0.506
from pycocotools
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.505
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.685

These results are very close, although not completely pass the competition issue #2258.
I think it's problem with false positive bboxes matched ignored criteria, but this is not actual for custom datasets and does not require an additional solution.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Remove line to retain pycocotools results

* Update val.py

* Update val.py

* Remove to device op

* Higher precision int conversion

* Update val.py

Co-authored-by: Glenn Jocher <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
3 people authored May 20, 2022
1 parent f43cd53 commit 43569d5
Show file tree
Hide file tree
Showing 2 changed files with 14 additions and 13 deletions.
4 changes: 2 additions & 2 deletions utils/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
p, r, f1 = p[:, i], r[:, i], f1[:, i]
tp = (r * nt).round() # true positives
fp = (tp / (p + eps) - tp).round() # false positives
return tp, fp, p, r, f1, ap, unique_classes.astype('int32')
return tp, fp, p, r, f1, ap, unique_classes.astype(int)


def compute_ap(recall, precision):
Expand Down Expand Up @@ -156,7 +156,7 @@ def process_batch(self, detections, labels):
matches = np.zeros((0, 3))

n = matches.shape[0] > 0
m0, m1, _ = matches.transpose().astype(np.int16)
m0, m1, _ = matches.transpose().astype(int)
for i, gc in enumerate(gt_classes):
j = m0 == i
if n and sum(j) == 1:
Expand Down
23 changes: 12 additions & 11 deletions val.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,16 +79,17 @@ def process_batch(detections, labels, iouv):
"""
correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
iou = box_iou(labels[:, 1:], detections[:, :4])
x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
matches = torch.from_numpy(matches).to(iouv.device)
correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(iouv)):
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return correct


Expand Down Expand Up @@ -265,7 +266,7 @@ def run(
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)

Expand Down

0 comments on commit 43569d5

Please sign in to comment.