Skip to content

Commit

Permalink
Add PyPI badges to README (#11770)
Browse files Browse the repository at this point in the history
* Update README.md

Signed-off-by: Glenn Jocher <[email protected]>

* Update README.zh-CN.md

Signed-off-by: Glenn Jocher <[email protected]>

* Update README.zh-CN.md

Signed-off-by: Glenn Jocher <[email protected]>

---------

Signed-off-by: Glenn Jocher <[email protected]>
  • Loading branch information
glenn-jocher authored Jun 25, 2023
1 parent 2334aa7 commit 0acc5cf
Show file tree
Hide file tree
Showing 2 changed files with 9 additions and 7 deletions.
4 changes: 3 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,9 @@ object detection, image segmentation and image classification tasks.

See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:

```commandline
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)

```bash
pip install ultralytics
```

Expand Down
12 changes: 6 additions & 6 deletions README.zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,14 +47,14 @@ YOLOv5 🚀 是世界上最受欢迎的视觉 AI,代表<a href="https://ultral
</div>
</div>

## <div align="center">YOLOv8 🚀 NEW</div>
## <div align="center">YOLOv8 🚀 新品</div>

We are thrilled to announce the launch of Ultralytics YOLOv8 🚀, our NEW cutting-edge, state-of-the-art (SOTA) model
released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**.
YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of
object detection, image segmentation and image classification tasks.
我们很高兴宣布 Ultralytics YOLOv8 🚀 的发布,这是我们新推出的领先水平、最先进的(SOTA)模型,发布于 **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**
YOLOv8 旨在快速、准确且易于使用,使其成为广泛的物体检测、图像分割和图像分类任务的极佳选择。

See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
请查看 [YOLOv8 文档](https://docs.ultralytics.com)了解详细信息,并开始使用:

[![PyPI 版本](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![下载量](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)

```commandline
pip install ultralytics
Expand Down

0 comments on commit 0acc5cf

Please sign in to comment.