python amrreader/main.py [-h] [-g GRAPH] [-n] [-p] [-e] [-v VISUALIZATION] indir outdir
e.g., python amrreader/main.py amrreader/test/test_amr_doc/ output/ -v=n
positional arguments:
indir directory to AMR input files
outdir output directory
optional arguments:
-g GRAPH, --graph GRAPH
generate AMR graphs -g=n: standard graphs
-g=s: simplified graphs
-n, --node generate AMR nodes
-p, --path generate AMR paths
-e, --entity generate named entities
-v VISUALIZATION, --visualization VISUALIZATION
generate html visualization -v=n: standard graphs
-v=s: simplified graphs
- Ptyhon3
- Your input should be raw AMR format (see amr-reader/tests/test_amr_doc/test).
- If you would like to use AMR visualization functionality, please install PyGraphviz first.
# ::snt I am cautiously anticipating the GOP nominee in 2012 not to be Mitt Romney.
(a / anticipate-01
:ARG0 (i / i)
:ARG1 (n / nominate-01 :polarity -
:ARG0 (p2 / political-party
:wiki "Republican_Party_(United_States)"
:name (n3 / name :op1 "GOP"))
:ARG1 (p / person
:wiki "Mitt_Romney"
:name (n2 / name :op1 "Mitt" :op2 "Romney"))
:time (d / date-entity :year 2012)))
Visualization:
Green Ellispe: concept
Orange Ellispe: predict with sense
Black Ellispe: constant
Blue Rectangle: named entity
If you would like to cite this work, please cite the following publication:
Unsupervised Entity Linking with Abstract Meaning Representation.