dataset: https://drive.google.com/drive/folders/1b2TIdIdH4HRRcTMPFetI_I1mHnlXQ-LY?usp=sharing
arxiv: https://arxiv.org/abs/2111.11491
Tested with Python 3.8, PyTorch 1.7.1, CUDA 11.0 and PyTorch3D 0.4.0
conda create --name liquid_rec python=3.8
conda activate liquid_rec
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c bottler nvidiacub
conda install pytorch3d=0.4.0=py38_cu110_pyt171 -c pytorch3d
Requires SPNet (original github is: https://github.com/cschenck/SmoothParticleNets) for solving collision constraint. The following fork updated the original SPNet for PyTorch 1.7.1
mkdir liquid_reconstruction
cd liquid_reconstruction
gh repo clone bango123/SmoothParticleNets
cd SmoothParticleNets
python setup.py install
Install dependencies for this repo (Open3d for visualization and trimesh & mesh-to-sdf to generate SDF's from mesh):
pip install open3d
pip install trimesh
pip install mesh-to-sdf
Install this repo
cd ..
conda install -c anaconda sympy
gh repo clone ucsdarclab/liquid_reconstruction
While not perfectly tuned, an example of PBF simulation (https://mmacklin.com/pbf_sig_preprint.pdf) is presnted in simulateBox.py. This is to show how the functional components in differentiableFluid.py behave.
python simulateBox.py