forked from open-mmlab/mmrotate
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
10 changed files
with
961 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
default_scope = 'mmrotate' | ||
|
||
default_hooks = dict( | ||
timer=dict(type='IterTimerHook'), | ||
logger=dict(type='LoggerHook', interval=50), | ||
param_scheduler=dict(type='ParamSchedulerHook'), | ||
checkpoint=dict(type='CheckpointHook', interval=12, max_keep_ckpts=3), | ||
sampler_seed=dict(type='DistSamplerSeedHook'), | ||
visualization=dict(type='mmdet.DetVisualizationHook')) | ||
|
||
env_cfg = dict( | ||
cudnn_benchmark=False, | ||
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), | ||
dist_cfg=dict(backend='nccl'), | ||
) | ||
|
||
vis_backends = [dict(type='LocalVisBackend')] | ||
visualizer = dict( | ||
type='RotLocalVisualizer', vis_backends=vis_backends, name='visualizer') | ||
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True) | ||
|
||
log_level = 'INFO' | ||
load_from = None | ||
resume = False | ||
|
||
custom_hooks = [ | ||
dict(type='mmdet.NumClassCheckHook'), | ||
dict( | ||
type='EMAHook', | ||
ema_type='mmdet.ExpMomentumEMA', | ||
momentum=0.0002, | ||
update_buffers=True, | ||
priority=49) | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
# dataset settings | ||
dataset_type = 'DOTARegDataset' | ||
data_root = 'data/mlc/' | ||
|
||
backend_args = None | ||
|
||
train_pipeline = [ | ||
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args), | ||
dict( | ||
type='mmrotate.MMROTATE_LoadAnnotations', | ||
with_bbox=True, | ||
box_type='qbox'), | ||
dict(type='ConvertBoxType', box_type_mapping=dict(gt_bboxes='rbox')), | ||
dict(type='mmdet.Resize', scale=(512, 512), keep_ratio=True), | ||
dict( | ||
type='mmdet.RandomFlip', | ||
prob=0.75, | ||
direction=['horizontal', 'vertical', 'diagonal']), | ||
dict( | ||
type='RandomRotate', | ||
prob=0.5, | ||
angle_range=180, | ||
rect_obj_labels=[9, 11]), | ||
dict(type='mmdet.Pad', size=(512, 512), pad_val=dict(img=(114, 114, 114))), | ||
dict( | ||
type='mmdet.PackDetInputs', | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | ||
'scale_factor', 'flip', 'flip_direction', | ||
'gt_bboxes_regressions')) | ||
] | ||
val_pipeline = [ | ||
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args), | ||
dict(type='mmdet.Resize', scale=(512, 512), keep_ratio=True), | ||
# avoid bboxes being resized | ||
dict( | ||
type='mmrotate.MMROTATE_LoadAnnotations', | ||
with_bbox=True, | ||
box_type='qbox'), | ||
dict(type='ConvertBoxType', box_type_mapping=dict(gt_bboxes='rbox')), | ||
dict(type='mmdet.Pad', size=(512, 512), pad_val=dict(img=(114, 114, 114))), | ||
dict( | ||
type='mmdet.PackDetInputs', | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | ||
'scale_factor', 'gt_bboxes_regressions')) | ||
] | ||
test_pipeline = [ | ||
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args), | ||
dict(type='mmdet.Resize', scale=(512, 512), keep_ratio=True), | ||
dict(type='mmdet.Pad', size=(512, 512), pad_val=dict(img=(114, 114, 114))), | ||
dict( | ||
type='mmdet.PackDetInputs', | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | ||
'scale_factor', 'gt_bboxes_regressions')) | ||
] | ||
train_dataloader = dict( | ||
batch_size=8, | ||
num_workers=8, | ||
persistent_workers=True, | ||
sampler=dict(type='DefaultSampler', shuffle=True), | ||
batch_sampler=None, | ||
pin_memory=False, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file='train/annfiles/', | ||
data_prefix=dict(img_path='train/images/'), | ||
filter_cfg=dict(filter_empty_gt=True), | ||
pipeline=train_pipeline)) | ||
val_dataloader = dict( | ||
batch_size=1, | ||
num_workers=2, | ||
persistent_workers=True, | ||
drop_last=False, | ||
sampler=dict(type='DefaultSampler', shuffle=False), | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file='val/annfiles/', | ||
data_prefix=dict(img_path='val/images/'), | ||
test_mode=True, | ||
pipeline=val_pipeline)) | ||
test_dataloader = val_dataloader | ||
|
||
val_evaluator = dict(type='DOTAMetric', metric='mAP') | ||
test_evaluator = val_evaluator | ||
|
||
# inference on test dataset and format the output results | ||
# for submission. Note: the test set has no annotation. | ||
# test_dataloader = dict( | ||
# batch_size=8, | ||
# num_workers=8, | ||
# persistent_workers=False, | ||
# drop_last=False, | ||
# sampler=dict(type='DefaultSampler', shuffle=False), | ||
# dataset=dict( | ||
# type=dataset_type, | ||
# data_root=data_root, | ||
# data_prefix=dict(img_path='test/images/'), | ||
# test_mode=True, | ||
# pipeline=test_pipeline)) | ||
# test_evaluator = dict( | ||
# type='DOTAMetric', | ||
# format_only=True, | ||
# merge_patches=True, | ||
# outfile_prefix='./work_dirs/rtmdet_r/Task1') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
max_epochs = 3 * 12 | ||
base_lr = 0.004 / 16 | ||
interval = 12 | ||
|
||
train_cfg = dict( | ||
type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=interval) | ||
val_cfg = dict(type='ValLoop') | ||
test_cfg = dict(type='TestLoop') | ||
|
||
# learning rate | ||
param_scheduler = [ | ||
dict( | ||
type='LinearLR', | ||
start_factor=1.0e-5, | ||
by_epoch=False, | ||
begin=0, | ||
end=1000), | ||
dict( | ||
type='CosineAnnealingLR', | ||
eta_min=base_lr * 0.05, | ||
begin=max_epochs // 2, | ||
end=max_epochs, | ||
T_max=max_epochs // 2, | ||
by_epoch=True, | ||
convert_to_iter_based=True), | ||
] | ||
|
||
# optimizer | ||
optim_wrapper = dict( | ||
type='OptimWrapper', | ||
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05), | ||
paramwise_cfg=dict( | ||
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
_base_ = [ | ||
'./_base_/default_runtime.py', './_base_/schedule_3x.py', | ||
'./_base_/dota_rr.py' | ||
] | ||
custom_imports = dict( | ||
imports=[ | ||
'projects.triplemu.core', | ||
'projects.triplemu.core.dataset', | ||
'projects.triplemu.core.loading', | ||
'projects.triplemu.core.rotated_rtmdet_head', | ||
], | ||
allow_failed_imports=False) | ||
|
||
checkpoint = 'weights/rotated_rtmdet_l-coco_pretrain-3x-dota_ms-06d248a2.pth' # noqa | ||
num_classes = 1 | ||
angle_version = 'le90' | ||
model = dict( | ||
type='mmdet.RTMDet', | ||
data_preprocessor=dict( | ||
type='mmdet.DetDataPreprocessor', | ||
mean=[103.53, 116.28, 123.675], | ||
std=[57.375, 57.12, 58.395], | ||
bgr_to_rgb=False, | ||
boxtype2tensor=False, | ||
batch_augments=None), | ||
backbone=dict( | ||
type='mmdet.CSPNeXt', | ||
arch='P5', | ||
expand_ratio=0.5, | ||
deepen_factor=1, | ||
widen_factor=1, | ||
channel_attention=True, | ||
norm_cfg=dict(type='SyncBN'), | ||
act_cfg=dict(type='SiLU'), | ||
init_cfg=dict( | ||
type='Pretrained', prefix='backbone.', checkpoint=checkpoint)), | ||
neck=dict( | ||
type='mmdet.CSPNeXtPAFPN', | ||
in_channels=[256, 512, 1024], | ||
out_channels=256, | ||
num_csp_blocks=3, | ||
expand_ratio=0.5, | ||
norm_cfg=dict(type='SyncBN'), | ||
act_cfg=dict(type='SiLU')), | ||
bbox_head=dict( | ||
type='RotatedRTMDetSepBNRegHead', | ||
num_classes=num_classes, | ||
in_channels=256, | ||
stacked_convs=2, | ||
feat_channels=256, | ||
angle_version=angle_version, | ||
anchor_generator=dict( | ||
type='mmdet.MlvlPointGenerator', offset=0, strides=[8, 16, 32]), | ||
bbox_coder=dict( | ||
type='DistanceAnglePointCoder', angle_version=angle_version), | ||
loss_cls=dict( | ||
type='mmdet.QualityFocalLoss', | ||
use_sigmoid=True, | ||
beta=2.0, | ||
loss_weight=1.0), | ||
loss_bbox=dict(type='RotatedIoULoss', mode='linear', loss_weight=2.0), | ||
with_objectness=False, | ||
exp_on_reg=True, | ||
share_conv=True, | ||
pred_kernel_size=1, | ||
use_hbbox_loss=False, | ||
scale_angle=False, | ||
loss_angle=None, | ||
norm_cfg=dict(type='SyncBN'), | ||
act_cfg=dict(type='SiLU')), | ||
train_cfg=dict( | ||
assigner=dict( | ||
type='mmdet.DynamicSoftLabelAssigner', | ||
iou_calculator=dict(type='RBboxOverlaps2D'), | ||
topk=13), | ||
allowed_border=-1, | ||
pos_weight=-1, | ||
debug=False), | ||
test_cfg=dict( | ||
nms_pre=2000, | ||
min_bbox_size=0, | ||
score_thr=0.05, | ||
nms=dict(type='nms_rotated', iou_threshold=0.1), | ||
max_per_img=2000), | ||
) | ||
|
||
# batch_size = (2 GPUs) x (4 samples per GPU) = 8 | ||
train_dataloader = dict(batch_size=4, num_workers=4) |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
import glob | ||
import os.path as osp | ||
from typing import List | ||
|
||
from mmrotate.datasets import DOTADataset | ||
from mmrotate.registry import DATASETS | ||
|
||
|
||
@DATASETS.register_module() | ||
class DOTARegDataset(DOTADataset): | ||
METAINFO = { | ||
'classes': ('building', ), | ||
'palette': [ | ||
(165, 42, 42), | ||
] | ||
} | ||
|
||
def load_data_list(self) -> List[dict]: | ||
cls_map = {c: i | ||
for i, c in enumerate(self.metainfo['classes']) | ||
} # in mmdet v2.0 label is 0-based | ||
data_list = [] | ||
if self.ann_file == '': | ||
img_files = glob.glob( | ||
osp.join(self.data_prefix['img_path'], f'*.{self.img_suffix}')) | ||
for img_path in img_files: | ||
data_info = {} | ||
data_info['img_path'] = img_path | ||
img_name = osp.split(img_path)[1] | ||
data_info['file_name'] = img_name | ||
img_id = img_name[:-4] | ||
data_info['img_id'] = img_id | ||
|
||
instance = dict( | ||
bbox=[], bbox_label=[], bbox_regression=[], ignore_flag=0) | ||
data_info['instances'] = [instance] | ||
data_list.append(data_info) | ||
|
||
return data_list | ||
else: | ||
txt_files = glob.glob(osp.join(self.ann_file, '*.txt')) | ||
if len(txt_files) == 0: | ||
raise ValueError('There is no txt file in ' | ||
f'{self.ann_file}') | ||
for txt_file in txt_files: | ||
data_info = {} | ||
img_id = osp.split(txt_file)[1][:-4] | ||
data_info['img_id'] = img_id | ||
img_name = img_id + f'.{self.img_suffix}' | ||
data_info['file_name'] = img_name | ||
data_info['img_path'] = osp.join(self.data_prefix['img_path'], | ||
img_name) | ||
|
||
instances = [] | ||
with open(txt_file) as f: | ||
s = f.readlines() | ||
for si in s: | ||
instance = {} | ||
bbox_info = si.split() | ||
instance['bbox'] = [float(i) for i in bbox_info[:8]] | ||
cls_name = bbox_info[8] | ||
instance['bbox_label'] = cls_map[cls_name] | ||
difficulty = int(bbox_info[9]) | ||
if difficulty > self.diff_thr: | ||
instance['ignore_flag'] = 1 | ||
else: | ||
instance['ignore_flag'] = 0 | ||
instance['bbox_regression'] = float(bbox_info[10]) | ||
instances.append(instance) | ||
data_info['instances'] = instances | ||
data_list.append(data_info) | ||
|
||
return data_list |
Oops, something went wrong.