forked from neo-ai/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[RUNTIME] Support module based interface runtime (apache#5753)
- Loading branch information
1 parent
f0577c4
commit 30caee5
Showing
8 changed files
with
927 additions
and
20 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""Graph runtime factory.""" | ||
import warnings | ||
from tvm._ffi.base import string_types | ||
from tvm._ffi.registry import get_global_func | ||
from tvm.runtime import ndarray | ||
|
||
class GraphRuntimeFactoryModule(object): | ||
"""Graph runtime factory module. | ||
This is a module of graph runtime factory | ||
Parameters | ||
---------- | ||
graph_json_str : str | ||
The graph to be deployed in json format output by graph compiler. | ||
The graph can contain operator(tvm_op) that points to the name of | ||
PackedFunc in the libmod. | ||
libmod : tvm.Module | ||
The module of the corresponding function | ||
libmod_name: str | ||
The name of module | ||
params : dict of str to NDArray | ||
The parameters of module | ||
""" | ||
|
||
def __init__(self, graph_json_str, libmod, libmod_name, params): | ||
assert isinstance(graph_json_str, string_types) | ||
fcreate = get_global_func("tvm.graph_runtime_factory.create") | ||
args = [] | ||
for k, v in params.items(): | ||
args.append(k) | ||
args.append(ndarray.array(v)) | ||
self.module = fcreate(graph_json_str, libmod, libmod_name, *args) | ||
self.graph_json = graph_json_str | ||
self.lib = libmod | ||
self.libmod_name = libmod_name | ||
self.params = params | ||
self.iter_cnt = 0 | ||
|
||
def export_library(self, file_name, fcompile=None, addons=None, **kwargs): | ||
return self.module.export_library(file_name, fcompile, addons, **kwargs) | ||
|
||
# Sometimes we want to get params explicitly. | ||
# For example, we want to save its params value to | ||
# an independent file. | ||
def get_params(self): | ||
return self.params | ||
|
||
def get_json(self): | ||
return self.graph_json | ||
|
||
def __getitem__(self, item): | ||
return self.module.__getitem__(item) | ||
|
||
def __iter__(self): | ||
warnings.warn( | ||
"legacy graph runtime behaviour of producing json / lib / params will be " | ||
"removed in the next release ", | ||
DeprecationWarning, 2) | ||
return self | ||
|
||
def __next__(self): | ||
if self.iter_cnt > 2: | ||
raise StopIteration | ||
|
||
objs = [self.graph_json, self.lib, self.params] | ||
obj = objs[self.iter_cnt] | ||
self.iter_cnt += 1 | ||
return obj |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* \file graph_runtime_factory.cc | ||
* \brief Graph runtime factory implementations | ||
*/ | ||
|
||
#include "./graph_runtime_factory.h" | ||
|
||
#include <tvm/node/container.h> | ||
#include <tvm/runtime/device_api.h> | ||
#include <tvm/runtime/registry.h> | ||
|
||
#include <iterator> | ||
#include <vector> | ||
|
||
namespace tvm { | ||
namespace runtime { | ||
|
||
GraphRuntimeFactory::GraphRuntimeFactory( | ||
const std::string& graph_json, | ||
const std::unordered_map<std::string, tvm::runtime::NDArray>& params, | ||
const std::string& module_name) { | ||
graph_json_ = graph_json; | ||
params_ = params; | ||
module_name_ = module_name; | ||
} | ||
|
||
PackedFunc GraphRuntimeFactory::GetFunction( | ||
const std::string& name, const tvm::runtime::ObjectPtr<tvm::runtime::Object>& sptr_to_self) { | ||
if (name == module_name_) { | ||
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) { | ||
std::vector<TVMContext> contexts; | ||
for (int i = 0; i < args.num_args; ++i) { | ||
contexts.emplace_back(args[i].operator TVMContext()); | ||
} | ||
*rv = this->RuntimeCreate(contexts); | ||
}); | ||
} else if (name == "debug_create") { | ||
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) { | ||
CHECK_GE(args.size(), 2); | ||
std::string module_name = args[0].operator String(); | ||
CHECK(module_name == module_name_) << "Currently we only support single model for now."; | ||
std::vector<TVMContext> contexts; | ||
for (int i = 1; i < args.num_args; ++i) { | ||
contexts.emplace_back(args[i].operator TVMContext()); | ||
} | ||
*rv = this->DebugRuntimeCreate(contexts); | ||
}); | ||
} else if (name == "remove_params") { | ||
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) { | ||
std::unordered_map<std::string, tvm::runtime::NDArray> empty_params{}; | ||
auto exec = | ||
make_object<GraphRuntimeFactory>(this->graph_json_, empty_params, this->module_name_); | ||
exec->Import(this->imports_[0]); | ||
*rv = Module(exec); | ||
}); | ||
} else { | ||
return PackedFunc(); | ||
} | ||
} | ||
|
||
void GraphRuntimeFactory::SaveToBinary(dmlc::Stream* stream) { | ||
stream->Write(graph_json_); | ||
std::vector<std::string> names; | ||
std::vector<DLTensor*> arrays; | ||
for (const auto& v : params_) { | ||
names.emplace_back(v.first); | ||
arrays.emplace_back(const_cast<DLTensor*>(v.second.operator->())); | ||
} | ||
uint64_t sz = arrays.size(); | ||
CHECK(sz == names.size()); | ||
stream->Write(sz); | ||
stream->Write(names); | ||
for (size_t i = 0; i < sz; ++i) { | ||
tvm::runtime::SaveDLTensor(stream, arrays[i]); | ||
} | ||
stream->Write(module_name_); | ||
} | ||
|
||
Module GraphRuntimeFactory::RuntimeCreate(const std::vector<TVMContext>& ctxs) { | ||
auto exec = make_object<GraphRuntime>(); | ||
exec->Init(this->graph_json_, this->imports_[0], ctxs); | ||
// set params | ||
SetParams(exec.get(), this->params_); | ||
return Module(exec); | ||
} | ||
|
||
Module GraphRuntimeFactory::DebugRuntimeCreate(const std::vector<TVMContext>& ctxs) { | ||
const PackedFunc* pf = tvm::runtime::Registry::Get("tvm.graph_runtime_debug.create"); | ||
CHECK(pf != nullptr) << "Cannot find function tvm.graph_runtime_debug.create in registry. " | ||
"Do you enable debug graph runtime build?"; | ||
// Debug runtime create packed function will call GetAllContexs, so we unpack the ctxs. | ||
std::vector<int> unpacked_ctxs; | ||
for (const auto& ctx : ctxs) { | ||
unpacked_ctxs.emplace_back(ctx.device_type); | ||
unpacked_ctxs.emplace_back(ctx.device_id); | ||
} | ||
size_t args_size = unpacked_ctxs.size() + 2; | ||
std::vector<TVMValue> values(args_size); | ||
std::vector<int> codes(args_size); | ||
runtime::TVMArgsSetter setter(values.data(), codes.data()); | ||
setter(0, this->graph_json_); | ||
setter(1, this->imports_[0]); | ||
for (size_t i = 0; i < unpacked_ctxs.size(); ++i) { | ||
setter(i + 2, unpacked_ctxs[i]); | ||
} | ||
TVMRetValue rv; | ||
pf->CallPacked(TVMArgs(values.data(), codes.data(), args_size), &rv); | ||
Module mod = rv.operator Module(); | ||
// debug graph runtime is one child class of graph runtime. | ||
SetParams(const_cast<GraphRuntime*>(mod.as<GraphRuntime>()), this->params_); | ||
return mod; | ||
} | ||
|
||
Module GraphRuntimeFactoryModuleLoadBinary(void* strm) { | ||
dmlc::Stream* stream = static_cast<dmlc::Stream*>(strm); | ||
std::string graph_json; | ||
std::unordered_map<std::string, tvm::runtime::NDArray> params; | ||
std::string module_name; | ||
CHECK(stream->Read(&graph_json)); | ||
uint64_t sz; | ||
CHECK(stream->Read(&sz)); | ||
std::vector<std::string> names; | ||
CHECK(stream->Read(&names)); | ||
CHECK(sz == names.size()); | ||
for (size_t i = 0; i < sz; ++i) { | ||
tvm::runtime::NDArray temp; | ||
temp.Load(stream); | ||
params[names[i]] = temp; | ||
} | ||
CHECK(stream->Read(&module_name)); | ||
auto exec = make_object<GraphRuntimeFactory>(graph_json, params, module_name); | ||
return Module(exec); | ||
} | ||
|
||
TVM_REGISTER_GLOBAL("tvm.graph_runtime_factory.create").set_body([](TVMArgs args, TVMRetValue* rv) { | ||
CHECK_GE(args.num_args, 3) << "The expected number of arguments for " | ||
"graph_runtime_factory.create needs at least 3, " | ||
"but it has " | ||
<< args.num_args; | ||
// The argument order is graph_json, module, module_name, params. | ||
CHECK_EQ((args.size() - 3) % 2, 0); | ||
std::unordered_map<std::string, tvm::runtime::NDArray> params; | ||
for (size_t i = 3; i < static_cast<size_t>(args.size()); i += 2) { | ||
std::string name = args[i].operator String(); | ||
params[name] = args[i + 1].operator tvm::runtime::NDArray(); | ||
} | ||
auto exec = make_object<GraphRuntimeFactory>(args[0], params, args[2]); | ||
exec->Import(args[1]); | ||
*rv = Module(exec); | ||
}); | ||
|
||
TVM_REGISTER_GLOBAL("runtime.module.loadbinary_GraphRuntimeFactory") | ||
.set_body_typed(GraphRuntimeFactoryModuleLoadBinary); | ||
|
||
} // namespace runtime | ||
} // namespace tvm |
Oops, something went wrong.