A small python project to check if I understand elementary neural network
and backprobagation.
I am using MNIST dataset,cross entropy loss,Relu neuron and simple
gradient descent.
this simple neural netword only comprise three layer,
datalayer,hidden layer and loss layer.
download MNIST dataset,and unzip them
https://www.dropbox.com/s/tdv02nqvh8v4nhe/mnist_test.7z?dl=0
https://www.dropbox.com/s/yg96k64ubh01yvm/mnist_train.7z?dl=0
1 copy and paste 'main' block in mian.py you can see the accuracy raising,and it can only reach about 90%
2 copy and paste 'test' block in mian.py run just-trained neural network on mnist_test dataset,see overall accuracy
3 copy and paste 'visualize result' block in mian.py It will show both image and predicted result
http://neuralnetworksanddeeplearning.com/chap2.html
Introduction to Machine Learning | The MIT Press