Skip to content

Self-contained Python Installation for RHEL/CENT 7 customized for server-based machine learning

License

Notifications You must be signed in to change notification settings

tommybutler/mlearnpy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

mlearnpy

CentOS 7 / RHEL 7 machine learning setup with Python 2.7

GPU support is not included, as this setup is tailored to a headless VM/bare metal server setup.

Prerequisites

  1. CentOS 7.4 x89_64 (previous versions of 7.x might work as long as they're x86_64)
  2. Decent amount of Linux devops expertise, because this comes with nearly no documentation and a lot of precursory knowledge is assumed...

This repository of utilities does not come with an installer. It is also assumed you will know how to copy these files, where to put them, and how to use them--simply based on how they are named. DO NOT blindly copy these over existing files. If you don't know what you're doing, get help from a friend who does.

MAKE NOTE! one of the .xz files is split in 40MB segments. Cat it back together for use in the setup below.

Setup

  1. Add this to your .bashrc
# Python VirtualEnvWrapper
if [[ -e /usr/local/bin/virtualenvwrapper.sh ]]
then
   export WORKON_HOME=~/python3
   export VIRTUALENV_PYTHON=/usr/bin/python3
   source /usr/local/bin/virtualenvwrapper.sh
fi
  1. extract mypy archive to your homedir
  2. verify sha512 checksums and the gpg signature for the sha512sums.txt file
  3. configure virtualenvwrapper to use the mypy python installation
  4. make a symlink called /home/tommy and point it at your homedir (sorry, but that's how the custom python was compiled in this case)
  5. copy files from usr--bin.tar.xz to your /usr/bin directory (when in dobt, don't overwrite pre-existing files!)
  6. copy files from usr--lib--python2.7--site-packages.tar.xz to /usr/lib/python2.7/site-packages (when in doubt, don't overwrite!)
  7. optionally install the h5 rpm packages

Freezing (saving) your models...

...Requires the h5 RPMs and their dependencies to be installed. That list of rpm packages is found in the rpms subdirectory at the top of this repository's file tree. yum install these packages, and see https://keras.io/getting-started/faq/#how-can-i-save-a-keras-model for further details on saving your models.

Packages included, listed in no particular order

  • cython
  • h5py, h5py-wrapper, h5json, h5config, h5browse, h5df
  • keras
  • lasagne
  • matplotlib
  • nolearn
  • numpy
  • pandas
  • pandas2sklearn
  • pandas-transformers
  • prophet (fbprophet)
  • pystan
  • pytorch
  • pytz
  • scikit-learn (sklearn)
  • scipy
  • six
  • skflow
  • sklearn-compiledtrees
  • sklearn-contrib-lightning
  • sklearn-deap
  • sklearn-evaluation
  • sklearn-pandas
  • spark-sklearn
  • spyder IDE (use X-forwarding over ssh)
  • tensorflow
  • theano
  • virtualenvwrapper ...and all their dependencies

pip freeze output

alabaster==0.7.10
appdirs==1.4.3
astroid==1.5.3
Babel==2.5.1
backports-abc==0.5
backports.functools-lru-cache==1.4
backports.shutil-get-terminal-size==1.0.0
backports.ssl-match-hostname==3.5.0.1
backports.weakref==1.0.post1
bleach==1.5.0
certifi==2017.11.5
chardet==3.0.4
click==6.7
coloredlogs==7.3
configparser==3.5.0
cycler==0.10.0
Cython==0.27.3
deap==1.0.2
decorator==4.1.2
docutils==0.14
entrypoints==0.2.3
enum34==1.1.6
fbprophet==0.2.1
funcsigs==1.0.2
functools32==3.2.3.post2
futures==3.1.1
gdbn==0.1
gnumpy==0.2
graphviz==0.8.1
h5browse==0.2
h5config==0.3
h5df==0.1.5
h5json==1.1.0
h5py==2.7.1
h5py-wrapper==1.0.1
html5lib==0.9999999
humanfriendly==4.4.1
idna==2.6
imagesize==0.7.1
ipykernel==4.6.1
ipython==5.5.0
ipython-genutils==0.2.0
isort==4.2.15
jedi==0.11.0
Jinja2==2.10
joblib==0.11
jsonschema==2.6.0
jupyter-client==5.1.0
jupyter-core==4.4.0
Keras==2.0.9
keras-datasets==0.1.0
Lasagne==0.1
lazy-object-proxy==1.3.1
Markdown==2.6.9
MarkupSafe==1.0
matplotlib==2.1.0
mccabe==0.6.1
mistune==0.8.1
mock==2.0.0
monotonic==1.4
mxnet==0.12.0
nbconvert==5.3.1
nbformat==4.4.0
nolearn==0.6.0
numpy==1.13.3
numpydoc==0.7.0
packaging==16.8
pandas==0.21.0
pandas-transformers==0.2.3
pandas2sklearn==0.0.3
pandocfilters==1.4.2
parso==0.1.0
pathlib2==2.3.0
pbr==3.1.1
pexpect==4.3.0
pickleshare==0.7.4
prompt-toolkit==1.0.15
protobuf==3.4.0
psutil==5.4.1
ptyprocess==0.5.2
pycodestyle==2.3.1
pyflakes==1.6.0
Pygments==2.2.0
pylint==1.7.4
PyOpenGL==3.1.0
pyparsing==2.2.0
pyqtgraph==0.10.0
pystan==2.17.0.0
python-dateutil==2.6.1
pytz==2017.3
PyYAML==3.12
pyzmq==16.0.3
QtAwesome==0.4.4
qtconsole==4.3.1
QtPy==1.3.1
requests==2.18.4
rope==0.10.7
scandir==1.6
scikit-learn==0.19.1
scipy==1.0.0
simplegeneric==0.8.1
singledispatch==3.4.0.3
six==1.11.0
skflow==0.1.0
sklearn==0.0
sklearn-compiledtrees==1.2
sklearn-contrib-lightning==0.5.0
sklearn-deap==0.2.2
sklearn-evaluation==0.4
sklearn-pandas==1.6.0
snowballstemmer==1.2.1
spark-sklearn==0.2.3
Sphinx==1.6.5
sphinxcontrib-websupport==1.0.1
spyder==3.2.4
spyder-terminal==0.2.3
subprocess32==3.2.7
tabulate==0.8.1
tensorflow==1.4.0
tensorflow-tensorboard==0.4.0rc2
testpath==0.3.1
Theano==0.9.0
torch==0.2.0.post3
tornado==4.5.2
traitlets==4.3.2
typing==3.6.2
urllib3==1.22
wcwidth==0.1.7
Werkzeug==0.12.2
wrapt==1.10.11

About

Self-contained Python Installation for RHEL/CENT 7 customized for server-based machine learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages