-
-
Notifications
You must be signed in to change notification settings - Fork 147
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
fix(subscriber): fix self wakes count #430
Conversation
Self-wakes were not being detected and displayed in the console. The `burn` task in the `app` example - which deliberately has many self-wakes - was not registering any. It appears that a logic error was present in the self-wake counting in `console-subscriber` since it was added in #238. When a self wake was detected, the `wakes` count was incremented a second time (the `wakes` count is incremented for all wakes before checking for a self wake), instead of increamenting the `self_wakes` count. This PR fixes the logic so that when a self wake is detected, the `self_wakes` count is incremented.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
good catch, looks good to me!
I wonder if it would be possible to have a test for this...
Testing is one thing that a lot of console lacks at the moment I think. It should be possible to test with synthetic logs for very specific cases (so as to make the tests fairly easy to read and write). |
Yeah...I'm not going to block this PR on testing, but it could be nice to figure out eventually. |
The `console-subscriber` crate is hard to test. This first test covers the self wake defect that was fixed in #430.
The `console-subscriber` crate has no integration tests. There are some unit tests, but without very high coverage of features. Recently, we've found or fixed a few errors which probably could have been caught by a medium level of integration testing. However, testing `console-subscriber` isn't straight forward. It is effectively a tracing subscriber (or layer) on one end, and a gRPC server on the other end. This change adds enough of a testing framework to write some initial integration tests. Each test comprises 2 parts: - One or more "expcted tasks" - A future which will be driven to completion on a dedicated Tokio runtime. Behind the scenes, a console subscriber layer is created and it's server part is connected to a duplex stream. The client of the duplex stream then records incoming updates and reconstructs "actual tasks". The layer itself is set as the default subscriber for the duration of `block_on` which is used to drive the provided future to completioin. The expected tasks have a set of "matches", which is how we find the actual task that we want to validate against. Currently, the only value we match on is the task's name. The expected tasks also have a set of expectations. These are other fields on the actual task which are validated once a matching task is found. Currently, the two fields which can have expectations set on them are the `wakes` and `self_wakes` fields. So, to construct an expected task, which will match a task with the name `"my-task"` and then validate that the matched task gets woken once, the code would be: ```rust ExpectedTask::default() .match_name("my-task") .expect_wakes(1); ``` A future which passes this test could be: ```rust async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) } ``` The full test would then look like: ```rust fn wakes_once() { let expected_task = ExpectedTask::default() .match_name("my-task") .expect_wakes(1); let future = async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) }; assert_task(expected_task, future); } ``` This change contains some initial tests for wakes and self wakes which would have caught the error fixed in #430. Additionally there are tests for the functionality of the testing framework itself.
The `console-subscriber` crate has no integration tests. There are some unit tests, but without very high coverage of features. Recently, we've found or fixed a few errors which probably could have been caught by a medium level of integration testing. However, testing `console-subscriber` isn't straight forward. It is effectively a tracing subscriber (or layer) on one end, and a gRPC server on the other end. This change adds enough of a testing framework to write some initial integration tests. Each test comprises 2 parts: - One or more "expcted tasks" - A future which will be driven to completion on a dedicated Tokio runtime. Behind the scenes, a console subscriber layer is created and it's server part is connected to a duplex stream. The client of the duplex stream then records incoming updates and reconstructs "actual tasks". The layer itself is set as the default subscriber for the duration of `block_on` which is used to drive the provided future to completioin. The expected tasks have a set of "matches", which is how we find the actual task that we want to validate against. Currently, the only value we match on is the task's name. The expected tasks also have a set of expectations. These are other fields on the actual task which are validated once a matching task is found. Currently, the two fields which can have expectations set on them are the `wakes` and `self_wakes` fields. So, to construct an expected task, which will match a task with the name `"my-task"` and then validate that the matched task gets woken once, the code would be: ```rust ExpectedTask::default() .match_name("my-task") .expect_wakes(1); ``` A future which passes this test could be: ```rust async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) } ``` The full test would then look like: ```rust fn wakes_once() { let expected_task = ExpectedTask::default() .match_name("my-task") .expect_wakes(1); let future = async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) }; assert_task(expected_task, future); } ``` This change contains some initial tests for wakes and self wakes which would have caught the error fixed in #430. Additionally there are tests for the functionality of the testing framework itself.
The `console-subscriber` crate has no integration tests. There are some unit tests, but without very high coverage of features. Recently, we've found or fixed a few errors which probably could have been caught by a medium level of integration testing. However, testing `console-subscriber` isn't straight forward. It is effectively a tracing subscriber (or layer) on one end, and a gRPC server on the other end. This change adds enough of a testing framework to write some initial integration tests. Each test comprises 2 parts: - One or more "expcted tasks" - A future which will be driven to completion on a dedicated Tokio runtime. Behind the scenes, a console subscriber layer is created and it's server part is connected to a duplex stream. The client of the duplex stream then records incoming updates and reconstructs "actual tasks". The layer itself is set as the default subscriber for the duration of `block_on` which is used to drive the provided future to completioin. The expected tasks have a set of "matches", which is how we find the actual task that we want to validate against. Currently, the only value we match on is the task's name. The expected tasks also have a set of expectations. These are other fields on the actual task which are validated once a matching task is found. Currently, the two fields which can have expectations set on them are the `wakes` and `self_wakes` fields. So, to construct an expected task, which will match a task with the name `"my-task"` and then validate that the matched task gets woken once, the code would be: ```rust ExpectedTask::default() .match_name("my-task") .expect_wakes(1); ``` A future which passes this test could be: ```rust async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) } ``` The full test would then look like: ```rust fn wakes_once() { let expected_task = ExpectedTask::default() .match_name("my-task") .expect_wakes(1); let future = async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) }; assert_task(expected_task, future); } ``` This change contains some initial tests for wakes and self wakes which would have caught the error fixed in #430. Additionally there are tests for the functionality of the testing framework itself.
The `console-subscriber` crate has no integration tests. There are some unit tests, but without very high coverage of features. Recently, we've found or fixed a few errors which probably could have been caught by a medium level of integration testing. However, testing `console-subscriber` isn't straight forward. It is effectively a tracing subscriber (or layer) on one end, and a gRPC server on the other end. This change adds enough of a testing framework to write some initial integration tests. Each test comprises 2 parts: - One or more "expcted tasks" - A future which will be driven to completion on a dedicated Tokio runtime. Behind the scenes, a console subscriber layer is created and it's server part is connected to a duplex stream. The client of the duplex stream then records incoming updates and reconstructs "actual tasks". The layer itself is set as the default subscriber for the duration of `block_on` which is used to drive the provided future to completioin. The expected tasks have a set of "matches", which is how we find the actual task that we want to validate against. Currently, the only value we match on is the task's name. The expected tasks also have a set of expectations. These are other fields on the actual task which are validated once a matching task is found. Currently, the two fields which can have expectations set on them are the `wakes` and `self_wakes` fields. So, to construct an expected task, which will match a task with the name `"my-task"` and then validate that the matched task gets woken once, the code would be: ```rust ExpectedTask::default() .match_name("my-task") .expect_wakes(1); ``` A future which passes this test could be: ```rust async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) } ``` The full test would then look like: ```rust fn wakes_once() { let expected_task = ExpectedTask::default() .match_name("my-task") .expect_wakes(1); let future = async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) }; assert_task(expected_task, future); } ``` The PR depends on 2 others: - #447 which fixes an error in the logic that determines whether a task is retained in the aggregator or not. - #451 which exposes the server parts and is necessary to allow us to connect the instrument server and client via a duplex channel. This change contains some initial tests for wakes and self wakes which would have caught the error fixed in #430. Additionally there are tests for the functionality of the testing framework itself.
The `console-subscriber` crate has no integration tests. There are some unit tests, but without very high coverage of features. Recently, we've found or fixed a few errors which probably could have been caught by a medium level of integration testing. However, testing `console-subscriber` isn't straight forward. It is effectively a tracing subscriber (or layer) on one end, and a gRPC server on the other end. This change adds enough of a testing framework to write some initial integration tests. Each test comprises 2 parts: - One or more "expcted tasks" - A future which will be driven to completion on a dedicated Tokio runtime. Behind the scenes, a console subscriber layer is created and it's server part is connected to a duplex stream. The client of the duplex stream then records incoming updates and reconstructs "actual tasks". The layer itself is set as the default subscriber for the duration of `block_on` which is used to drive the provided future to completioin. The expected tasks have a set of "matches", which is how we find the actual task that we want to validate against. Currently, the only value we match on is the task's name. The expected tasks also have a set of expectations. These are other fields on the actual task which are validated once a matching task is found. Currently, the two fields which can have expectations set on them are the `wakes` and `self_wakes` fields. So, to construct an expected task, which will match a task with the name `"my-task"` and then validate that the matched task gets woken once, the code would be: ```rust ExpectedTask::default() .match_name("my-task") .expect_wakes(1); ``` A future which passes this test could be: ```rust async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) } ``` The full test would then look like: ```rust fn wakes_once() { let expected_task = ExpectedTask::default() .match_name("my-task") .expect_wakes(1); let future = async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) }; assert_task(expected_task, future); } ``` The PR depends on 2 others: - #447 which fixes an error in the logic that determines whether a task is retained in the aggregator or not. - #451 which exposes the server parts and is necessary to allow us to connect the instrument server and client via a duplex channel. This change contains some initial tests for wakes and self wakes which would have caught the error fixed in #430. Additionally there are tests for the functionality of the testing framework itself.
The `console-subscriber` crate has no integration tests. There are some unit tests, but without very high coverage of features. Recently, we've found or fixed a few errors which probably could have been caught by a medium level of integration testing. However, testing `console-subscriber` isn't straight forward. It is effectively a tracing subscriber (or layer) on one end, and a gRPC server on the other end. This change adds enough of a testing framework to write some initial integration tests. Each test comprises 2 parts: - One or more "expcted tasks" - A future which will be driven to completion on a dedicated Tokio runtime. Behind the scenes, a console subscriber layer is created and it's server part is connected to a duplex stream. The client of the duplex stream then records incoming updates and reconstructs "actual tasks". The layer itself is set as the default subscriber for the duration of `block_on` which is used to drive the provided future to completioin. The expected tasks have a set of "matches", which is how we find the actual task that we want to validate against. Currently, the only value we match on is the task's name. The expected tasks also have a set of expectations. These are other fields on the actual task which are validated once a matching task is found. Currently, the two fields which can have expectations set on them are the `wakes` and `self_wakes` fields. So, to construct an expected task, which will match a task with the name `"my-task"` and then validate that the matched task gets woken once, the code would be: ```rust ExpectedTask::default() .match_name("my-task") .expect_wakes(1); ``` A future which passes this test could be: ```rust async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) } ``` The full test would then look like: ```rust fn wakes_once() { let expected_task = ExpectedTask::default() .match_name("my-task") .expect_wakes(1); let future = async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) }; assert_task(expected_task, future); } ``` The PR depends on 2 others: - #447 which fixes an error in the logic that determines whether a task is retained in the aggregator or not. - #451 which exposes the server parts and is necessary to allow us to connect the instrument server and client via a duplex channel. This change contains some initial tests for wakes and self wakes which would have caught the error fixed in #430. Additionally there are tests for the functionality of the testing framework itself.
The `console-subscriber` crate has no integration tests. There are some unit tests, but without very high coverage of features. Recently, we've found or fixed a few errors which probably could have been caught by a medium level of integration testing. However, testing `console-subscriber` isn't straight forward. It is effectively a tracing subscriber (or layer) on one end, and a gRPC server on the other end. This change adds enough of a testing framework to write some initial integration tests. It is the first step towards closing #450. Each test comprises 2 parts: - One or more "expcted tasks" - A future which will be driven to completion on a dedicated Tokio runtime. Behind the scenes, a console subscriber layer is created and it's server part is connected to a duplex stream. The client of the duplex stream then records incoming updates and reconstructs "actual tasks". The layer itself is set as the default subscriber for the duration of `block_on` which is used to drive the provided future to completioin. The expected tasks have a set of "matches", which is how we find the actual task that we want to validate against. Currently, the only value we match on is the task's name. The expected tasks also have a set of expectations. These are other fields on the actual task which are validated once a matching task is found. Currently, the two fields which can have expectations set on them are the `wakes` and `self_wakes` fields. So, to construct an expected task, which will match a task with the name `"my-task"` and then validate that the matched task gets woken once, the code would be: ```rust ExpectedTask::default() .match_name("my-task") .expect_wakes(1); ``` A future which passes this test could be: ```rust async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) } ``` The full test would then look like: ```rust fn wakes_once() { let expected_task = ExpectedTask::default() .match_name("my-task") .expect_wakes(1); let future = async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) }; assert_task(expected_task, future); } ``` The PR depends on 2 others: - #447 which fixes an error in the logic that determines whether a task is retained in the aggregator or not. - #451 which exposes the server parts and is necessary to allow us to connect the instrument server and client via a duplex channel. This change contains some initial tests for wakes and self wakes which would have caught the error fixed in #430. Additionally there are tests for the functionality of the testing framework itself.
The `console-subscriber` crate has no integration tests. There are some unit tests, but without very high coverage of features. Recently, we've found or fixed a few errors which probably could have been caught by a medium level of integration testing. However, testing `console-subscriber` isn't straight forward. It is effectively a tracing subscriber (or layer) on one end, and a gRPC server on the other end. This change adds enough of a testing framework to write some initial integration tests. It is the first step towards closing #450. Each test comprises 2 parts: - One or more "expcted tasks" - A future which will be driven to completion on a dedicated Tokio runtime. Behind the scenes, a console subscriber layer is created and it's server part is connected to a duplex stream. The client of the duplex stream then records incoming updates and reconstructs "actual tasks". The layer itself is set as the default subscriber for the duration of `block_on` which is used to drive the provided future to completioin. The expected tasks have a set of "matches", which is how we find the actual task that we want to validate against. Currently, the only value we match on is the task's name. The expected tasks also have a set of expectations. These are other fields on the actual task which are validated once a matching task is found. Currently, the two fields which can have expectations set on them are the `wakes` and `self_wakes` fields. So, to construct an expected task, which will match a task with the name `"my-task"` and then validate that the matched task gets woken once, the code would be: ```rust ExpectedTask::default() .match_name("my-task") .expect_wakes(1); ``` A future which passes this test could be: ```rust async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) } ``` The full test would then look like: ```rust fn wakes_once() { let expected_task = ExpectedTask::default() .match_name("my-task") .expect_wakes(1); let future = async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) }; assert_task(expected_task, future); } ``` The PR depends on 2 others: - #447 which fixes an error in the logic that determines whether a task is retained in the aggregator or not. - #451 which exposes the server parts and is necessary to allow us to connect the instrument server and client via a duplex channel. This change contains some initial tests for wakes and self wakes which would have caught the error fixed in #430. Additionally there are tests for the functionality of the testing framework itself.
The `console-subscriber` crate has no integration tests. There are some unit tests, but without very high coverage of features. Recently, we've found or fixed a few errors which probably could have been caught by a medium level of integration testing. However, testing `console-subscriber` isn't straight forward. It is effectively a tracing subscriber (or layer) on one end, and a gRPC server on the other end. This change adds enough of a testing framework to write some initial integration tests. It is the first step towards closing #450. Each test comprises 2 parts: - One or more "expected tasks" - A future which will be driven to completion on a dedicated Tokio runtime. Behind the scenes, a console subscriber layer is created and its server part is connected to a duplex stream. The client of the duplex stream then records incoming updates and reconstructs "actual tasks". The layer itself is set as the default subscriber for the duration of `block_on` which is used to drive the provided future to completioin. The expected tasks have a set of "matches", which is how we find the actual task that we want to validate against. Currently, the only value we match on is the task's name. The expected tasks also have a set of "expectations". These are other fields on the actual task which are validated once a matching task is found. Currently, the two fields which can have expectations set on them are `wakes` and `self_wakes`. So, to construct an expected task, which will match a task with the name `"my-task"` and then validate that the matched task gets woken once, the code would be: ```rust ExpectedTask::default() .match_name("my-task") .expect_wakes(1); ``` A future which passes this test could be: ```rust async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) } ``` The full test would then look like: ```rust fn wakes_once() { let expected_task = ExpectedTask::default() .match_name("my-task") .expect_wakes(1); let future = async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) }; assert_task(expected_task, future); } ``` The PR depends on 2 others: - #447 which fixes an error in the logic that determines whether a task is retained in the aggregator or not. - #451 which exposes the server parts and is necessary to allow us to connect the instrument server and client via a duplex channel. This change contains some initial tests for wakes and self wakes which would have caught the error fixed in #430. Additionally there are tests for the functionality of the testing framework itself. Co-authored-by: Eliza Weisman <[email protected]>
Self-wakes were not being detected and displayed in the console. The `burn` task in the `app` example - which deliberately has many self-wakes - was not registering any. It appears that a logic error was present in the self-wake counting in `console-subscriber` since it was added in #238. When a self wake was detected, the `wakes` count was incremented a second time (the `wakes` count is incremented for all wakes before checking for a self wake), instead of increamenting the `self_wakes` count. This PR fixes the logic so that when a self wake is detected, the `self_wakes` count is incremented.
The `console-subscriber` crate has no integration tests. There are some unit tests, but without very high coverage of features. Recently, we've found or fixed a few errors which probably could have been caught by a medium level of integration testing. However, testing `console-subscriber` isn't straight forward. It is effectively a tracing subscriber (or layer) on one end, and a gRPC server on the other end. This change adds enough of a testing framework to write some initial integration tests. It is the first step towards closing #450. Each test comprises 2 parts: - One or more "expected tasks" - A future which will be driven to completion on a dedicated Tokio runtime. Behind the scenes, a console subscriber layer is created and its server part is connected to a duplex stream. The client of the duplex stream then records incoming updates and reconstructs "actual tasks". The layer itself is set as the default subscriber for the duration of `block_on` which is used to drive the provided future to completioin. The expected tasks have a set of "matches", which is how we find the actual task that we want to validate against. Currently, the only value we match on is the task's name. The expected tasks also have a set of "expectations". These are other fields on the actual task which are validated once a matching task is found. Currently, the two fields which can have expectations set on them are `wakes` and `self_wakes`. So, to construct an expected task, which will match a task with the name `"my-task"` and then validate that the matched task gets woken once, the code would be: ```rust ExpectedTask::default() .match_name("my-task") .expect_wakes(1); ``` A future which passes this test could be: ```rust async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) } ``` The full test would then look like: ```rust fn wakes_once() { let expected_task = ExpectedTask::default() .match_name("my-task") .expect_wakes(1); let future = async { task::Builder::new() .name("my-task") .spawn(async { tokio::time::sleep(std::time::Duration::ZERO).await }) }; assert_task(expected_task, future); } ``` The PR depends on 2 others: - #447 which fixes an error in the logic that determines whether a task is retained in the aggregator or not. - #451 which exposes the server parts and is necessary to allow us to connect the instrument server and client via a duplex channel. This change contains some initial tests for wakes and self wakes which would have caught the error fixed in #430. Additionally there are tests for the functionality of the testing framework itself. Co-authored-by: Eliza Weisman <[email protected]>
# Changelog All notable changes to this project will be documented in this file. This project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). ## console-subscriber-v0.2.0 - (2023-09-29) [0b0c1af](https://github.com/tokio-rs/console/commit/0b0c1aff18c3260d3a45a78f6c0d6f4206af1cbb)...[0b0c1af](https://github.com/tokio-rs/console/commit/0b0c1aff18c3260d3a45a78f6c0d6f4206af1cbb) ### <a id = "console-subscriber-v0.2.0-breaking"></a>Breaking Changes - **Update Tonic and Prost dependencies ([#364](#364 ([f9b8e03](https://github.com/tokio-rs/console/commit/f9b8e03bd7ee1d0edb441c94a93a350d5b06ed3b))<br />This commit updates the public dependencies `prost` and `tonic` to semver-incompatible versions (v0.11.0 and v0.8.0, respectively). This is a breaking change for users who are integrating the `console-api` protos with their own `tonic` servers or clients. - **Update `tonic` to v0.10 and increase MSRV to 1.64 ([#464](#464 ([96e62c8](https://github.com/tokio-rs/console/commit/96e62c83ef959569bb062dc8fee98fa2b2461e8d))<br />This is a breaking change for users of `console-api` and `console-subscriber`, as it changes the public `tonic` dependency to a semver-incompatible version. This breaks compatibility with `tonic` 0.9.x and `prost` 0.11.x. ### Added - [**breaking**](#console-subscriber-v0.2.0-breaking) Update Tonic and Prost dependencies ([#364](#364)) ([f9b8e03](f9b8e03)) - Add support for Unix domain sockets ([#388](#388)) ([a944dbc](a944dbc), closes [#296](#296)) - Add scheduled time per task ([#406](#406)) ([f280df9](f280df9)) - Add task scheduled times histogram ([#409](#409)) ([d92a399](d92a399)) - Update `tonic` to 0.9 ([#420](#420)) ([48af1ee](48af1ee)) - Update MSRV to Rust 1.60.0 ([b18ee47](b18ee47)) - Expose server parts ([#451](#451)) ([e51ac5a](e51ac5a)) - Add cfg `console_without_tokio_unstable` ([#446](#446)) ([7ed6673](7ed6673)) - Add warning for tasks that never yield ([#439](#439)) ([d05fa9e](d05fa9e)) - [**breaking**](#console-subscriber-v0.2.0-breaking) Update `tonic` to v0.10 and increase MSRV to 1.64 ([#464](#464)) ([96e62c8](96e62c8)) ### Documented - Fix unclosed code block ([#463](#463)) ([362bdbe](362bdbe)) - Update MSRV version docs to 1.64 ([#467](#467)) ([94a5a51](94a5a51)) ### Fixed - Fix build on tokio 1.21.0 ([#374](#374)) ([c34ac2d](c34ac2d)) - Fix off-by-one indexing for `callsites` ([#391](#391)) ([43891ab](43891ab)) - Bump minimum Tokio version ([#397](#397)) ([bbb8f25](bbb8f25), fixes [#386](#386)) - Fix self wakes count ([#430](#430)) ([d308935](d308935)) - Remove clock skew warning in `start_poll` ([#434](#434)) ([4a88b28](4a88b28)) - Do not report excessive polling ([#378](#378)) ([#440](#440)) ([8b483bf](8b483bf), closes [#378](#378)) - Correct retain logic ([#447](#447)) ([36ffc51](36ffc51)) Signed-off-by: Eliza Weisman <[email protected]>
Self-wakes were not being detected and displayed in the console. The
burn
task in theapp
example - which deliberately has manyself-wakes - was not registering any.
It appears that a logic error was present in the self-wake counting in
console-subscriber
since it was added in #238. When a self wake wasdetected, the
wakes
count was incremented a second time (thewakes
count is incremented for all wakes before checking for a self wake),
instead of increamenting the
self_wakes
count.This PR fixes the logic so that when a self wake is detected, the
self_wakes
count is incremented.Fixes: #423