Skip to content

Seamlessly Connecting Notion Database with Python Pandas DataFrame

License

Notifications You must be signed in to change notification settings

tim-watcha/notion-df

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

notion-df: Seamlessly Connecting Notion Database with Pandas DataFrame

Please Note: This project is currently in pre-alpha stage. The code are not appropriately documented and tested. Please report any issues you find. Thanks!

Installation

pip install notion-df

Usage

  • Before starting, please follow the instructions to create a new integration and add it to your Notion page or database.

    • We'll refer Internal Integration Token as the api_key below.
  • Pandas-flavored APIs: Just need to add two additional lines of code:

    import notion_df
    notion_df.pandas() #That's it!
    
    page_url = "paste your page url from Notion"
    api_key = "paste your api key (internal integration key)"
    
    import pandas as pd
    df = pd.read_notion(page_url, api_key=api_key)
    df.to_notion(page_url, api_key=api_key)
  • Download your Notion table as a pandas DataFrame

    import notion_df
    df = notion_df.download(notion_database_url, api_key=api_key)
    # Equivalent to: df = pd.read_notion(notion_database_url, api_key=api_key)
    df.head()
    Only downloading the first `nrows` from a database
    df = notion_df.download(notion_database_url, nrows=nrows) #e.g., 10
    What if your table has a relation column?
    df = notion_df.download(notion_database_url, 
                            resolve_relation_values=True)

    The resolve_relation_values=True will automatically resolve the linking for all the relation columns whose target can be accessed by the current notion integration.

    In details, let's say the "test" column in df is a relation column in Notion.

    1. When resolve_relation_values=False, the return results for that column will be a list of UUIDs of the target page: ['65e04f11-xxxx', 'b0ffcb4b-xxxx', ].
    2. When resolve_relation_values=True, the return results for that column will be a list of regular strings corresponding to the name column of the target pages: ['page1', 'page2', ].
  • Append a local df to a Notion database:

    import notion_df
    notion_df.upload(df, notion_database_url, title="page-title", api_key=api_key)
    # Equivalent to: df.to_notion(notion_database_url, title="page-title", api_key=api_key)
  • Upload a local df to a newly created database in a Notion page:

    import notion_df
    notion_df.upload(df, notion_page_url, title="page-title", api_key=api_key)
    # Equivalent to: df.to_notion(notion_page_url, title="page-title", api_key=api_key)
  • Tired of typing api_key=api_key each time?

    import notion_df
    notion_df.config(api_key=api_key) # Or set an environment variable `NOTION_API_KEY`
    df = notion_df.download(notion_database_url)
    notion_df.upload(df, notion_page_url, title="page-title")
    # Similarly in pandas APIs: df.to_notion(notion_page_url, title="page-title")

Development

  1. Clone the repo and install the dependencies:
    git clone [email protected]:lolipopshock/notion-df.git
    cd notion-df
    pip install -e .[dev]
  2. How to run tests?
    NOTION_API_KEY="<the-api-key>" pytest tests/
    The tests are dependent on a list of notebooks, specified by the following environment variables:
Environment Variable Description
NOTION_API_KEY The API key for your Notion integration
NOTION_ROLLUP_DF -
NOTION_FILES_DF -
NOTION_FORMULA_DF -
NOTION_RELATION_DF -
NOTION_RELATION_TARGET_DF -
NOTION_LONG_STRING_DF -
NOTION_RICH_TEXT_DF -

TODOs

  • Add tests for
    • load
    • upload
    • values.py
    • configs.py
    • base.py
  • Better class organizations/namings for *Configs and *Values

About

Seamlessly Connecting Notion Database with Python Pandas DataFrame

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%