forked from pingcap/tidb
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This is an automated cherry-pick of pingcap#52208
Signed-off-by: ti-chi-bot <[email protected]>
- Loading branch information
1 parent
69894ec
commit 9789623
Showing
14 changed files
with
3,710 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,312 @@ | ||
// Copyright 2023 PingCAP, Inc. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
package cardinality | ||
|
||
import ( | ||
"math" | ||
|
||
"github.com/pingcap/tidb/pkg/expression" | ||
"github.com/pingcap/tidb/pkg/planner/context" | ||
"github.com/pingcap/tidb/pkg/planner/property" | ||
"github.com/pingcap/tidb/pkg/planner/util" | ||
"github.com/pingcap/tidb/pkg/statistics" | ||
"github.com/pingcap/tidb/pkg/types" | ||
"github.com/pingcap/tidb/pkg/util/ranger" | ||
"github.com/pingcap/tidb/pkg/util/set" | ||
) | ||
|
||
// SelectionFactor is the factor which is used to estimate the row count of selection. | ||
const SelectionFactor = 0.8 | ||
|
||
// AdjustRowCountForTableScanByLimit will adjust the row count for table scan by limit. | ||
// For a query like `select pk from t using index(primary) where pk > 10 limit 1`, the row count of the table scan | ||
// should be adjusted by the limit number 1, because only one row is returned. | ||
func AdjustRowCountForTableScanByLimit(sctx context.PlanContext, | ||
dsStatsInfo, dsTableStats *property.StatsInfo, dsStatisticTable *statistics.Table, | ||
path *util.AccessPath, expectedCnt float64, desc bool) float64 { | ||
rowCount := path.CountAfterAccess | ||
if expectedCnt < dsStatsInfo.RowCount { | ||
selectivity := dsStatsInfo.RowCount / path.CountAfterAccess | ||
uniformEst := min(path.CountAfterAccess, expectedCnt/selectivity) | ||
|
||
corrEst, ok, corr := crossEstimateTableRowCount(sctx, | ||
dsStatsInfo, dsTableStats, dsStatisticTable, path, expectedCnt, desc) | ||
if ok { | ||
// TODO: actually, before using this count as the estimated row count of table scan, we need additionally | ||
// check if count < row_count(first_region | last_region), and use the larger one since we build one copTask | ||
// for one region now, so even if it is `limit 1`, we have to scan at least one region in table scan. | ||
// Currently, we can use `tikvrpc.CmdDebugGetRegionProperties` interface as `getSampRegionsRowCount()` does | ||
// to get the row count in a region, but that result contains MVCC old version rows, so it is not that accurate. | ||
// Considering that when this scenario happens, the execution time is close between IndexScan and TableScan, | ||
// we do not add this check temporarily. | ||
|
||
// to reduce risks of correlation adjustment, use the maximum between uniformEst and corrEst | ||
rowCount = max(uniformEst, corrEst) | ||
} else if abs := math.Abs(corr); abs < 1 { | ||
correlationFactor := math.Pow(1-abs, float64(sctx.GetSessionVars().CorrelationExpFactor)) | ||
rowCount = min(path.CountAfterAccess, uniformEst/correlationFactor) | ||
} | ||
} | ||
return rowCount | ||
} | ||
|
||
// crossEstimateTableRowCount estimates row count of table scan using histogram of another column which is in TableFilters | ||
// and has high order correlation with handle column. For example, if the query is like: | ||
// `select * from tbl where a = 1 order by pk limit 1` | ||
// if order of column `a` is strictly correlated with column `pk`, the row count of table scan should be: | ||
// `1 + row_count(a < 1 or a is null)` | ||
func crossEstimateTableRowCount(sctx context.PlanContext, | ||
dsStatsInfo, dsTableStats *property.StatsInfo, dsStatisticTable *statistics.Table, | ||
path *util.AccessPath, expectedCnt float64, desc bool) (float64, bool, float64) { | ||
if dsStatisticTable.Pseudo || len(path.TableFilters) == 0 || !sctx.GetSessionVars().EnableCorrelationAdjustment { | ||
return 0, false, 0 | ||
} | ||
col, corr := getMostCorrCol4Handle(path.TableFilters, dsStatisticTable, sctx.GetSessionVars().CorrelationThreshold) | ||
return crossEstimateRowCount(sctx, dsStatsInfo, dsTableStats, path, path.TableFilters, col, corr, expectedCnt, desc) | ||
} | ||
|
||
// AdjustRowCountForIndexScanByLimit will adjust the row count for table scan by limit. | ||
// For a query like `select k from t using index(k) where k > 10 limit 1`, the row count of the index scan | ||
// should be adjusted by the limit number 1, because only one row is returned. | ||
func AdjustRowCountForIndexScanByLimit(sctx context.PlanContext, | ||
dsStatsInfo, dsTableStats *property.StatsInfo, dsStatisticTable *statistics.Table, | ||
path *util.AccessPath, expectedCnt float64, desc bool) float64 { | ||
rowCount := path.CountAfterAccess | ||
count, ok, corr := crossEstimateIndexRowCount(sctx, | ||
dsStatsInfo, dsTableStats, dsStatisticTable, path, expectedCnt, desc) | ||
if ok { | ||
rowCount = count | ||
} else if abs := math.Abs(corr); abs < 1 { | ||
// If OptOrderingIdxSelRatio is enabled - estimate the difference between index and table filtering, as this represents | ||
// the possible scan range when LIMIT rows will be found. orderRatio is the estimated percentage of that range when the first | ||
// row is expected to be found. Index filtering applies orderRatio twice. Once found - rows are estimated to be clustered (expectedCnt). | ||
// This formula is to bias away from non-filtering (or poorly filtering) indexes that provide order due, where filtering exists | ||
// outside of that index. Such plans have high risk since we cannot estimate when rows will be found. | ||
orderRatio := sctx.GetSessionVars().OptOrderingIdxSelRatio | ||
if dsStatsInfo.RowCount < path.CountAfterAccess && orderRatio >= 0 { | ||
rowsToMeetFirst := (((path.CountAfterAccess - path.CountAfterIndex) * orderRatio) + (path.CountAfterIndex - dsStatsInfo.RowCount)) * orderRatio | ||
rowCount = rowsToMeetFirst + expectedCnt | ||
} else { | ||
// Assume rows are linearly distributed throughout the range - for example: selectivity 0.1 assumes that a | ||
// qualified row is found every 10th row. | ||
correlationFactor := math.Pow(1-abs, float64(sctx.GetSessionVars().CorrelationExpFactor)) | ||
selectivity := dsStatsInfo.RowCount / rowCount | ||
rowCount = min(expectedCnt/selectivity/correlationFactor, rowCount) | ||
} | ||
} | ||
return rowCount | ||
} | ||
|
||
// crossEstimateIndexRowCount estimates row count of index scan using histogram of another column which is in TableFilters/IndexFilters | ||
// and has high order correlation with the first index column. For example, if the query is like: | ||
// `select * from tbl where a = 1 order by b limit 1` | ||
// if order of column `a` is strictly correlated with column `b`, the row count of IndexScan(b) should be: | ||
// `1 + row_count(a < 1 or a is null)` | ||
func crossEstimateIndexRowCount(sctx context.PlanContext, | ||
dsStatsInfo, dsTableStats *property.StatsInfo, dsStatisticTable *statistics.Table, | ||
path *util.AccessPath, expectedCnt float64, desc bool) (float64, bool, float64) { | ||
filtersLen := len(path.TableFilters) + len(path.IndexFilters) | ||
sessVars := sctx.GetSessionVars() | ||
if dsStatisticTable.Pseudo || filtersLen == 0 || !sessVars.EnableExtendedStats || !sctx.GetSessionVars().EnableCorrelationAdjustment { | ||
return 0, false, 0 | ||
} | ||
col, corr := getMostCorrCol4Index(path, dsStatisticTable, sessVars.CorrelationThreshold) | ||
filters := make([]expression.Expression, 0, filtersLen) | ||
filters = append(filters, path.TableFilters...) | ||
filters = append(filters, path.IndexFilters...) | ||
return crossEstimateRowCount(sctx, dsStatsInfo, dsTableStats, path, filters, col, corr, expectedCnt, desc) | ||
} | ||
|
||
// crossEstimateRowCount is the common logic of crossEstimateTableRowCount and crossEstimateIndexRowCount. | ||
func crossEstimateRowCount(sctx context.PlanContext, | ||
dsStatsInfo, dsTableStats *property.StatsInfo, | ||
path *util.AccessPath, conds []expression.Expression, col *expression.Column, | ||
corr, expectedCnt float64, desc bool) (float64, bool, float64) { | ||
// If the scan is not full range scan, we cannot use histogram of other columns for estimation, because | ||
// the histogram reflects value distribution in the whole table level. | ||
if col == nil || len(path.AccessConds) > 0 { | ||
return 0, false, corr | ||
} | ||
colUniqueID := col.UniqueID | ||
if corr < 0 { | ||
desc = !desc | ||
} | ||
accessConds, remained := ranger.DetachCondsForColumn(sctx, conds, col) | ||
if len(accessConds) == 0 { | ||
return 0, false, corr | ||
} | ||
ranges, accessConds, _, err := ranger.BuildColumnRange(accessConds, sctx, col.RetType, types.UnspecifiedLength, sctx.GetSessionVars().RangeMaxSize) | ||
if len(ranges) == 0 || len(accessConds) == 0 || err != nil { | ||
return 0, err == nil, corr | ||
} | ||
idxID := int64(-1) | ||
idxIDs, idxExists := dsStatsInfo.HistColl.ColUniqueID2IdxIDs[colUniqueID] | ||
if idxExists && len(idxIDs) > 0 { | ||
idxID = idxIDs[0] | ||
} | ||
rangeCounts, ok := getColumnRangeCounts(sctx, colUniqueID, ranges, dsTableStats.HistColl, idxID) | ||
if !ok { | ||
return 0, false, corr | ||
} | ||
convertedRanges, count, isFull := convertRangeFromExpectedCnt(ranges, rangeCounts, expectedCnt, desc) | ||
if isFull { | ||
return path.CountAfterAccess, true, 0 | ||
} | ||
var rangeCount float64 | ||
if idxExists { | ||
rangeCount, err = GetRowCountByIndexRanges(sctx, dsTableStats.HistColl, idxID, convertedRanges) | ||
} else { | ||
rangeCount, err = GetRowCountByColumnRanges(sctx, dsTableStats.HistColl, colUniqueID, convertedRanges) | ||
} | ||
if err != nil { | ||
return 0, false, corr | ||
} | ||
scanCount := rangeCount + expectedCnt - count | ||
if len(remained) > 0 { | ||
scanCount = scanCount / SelectionFactor | ||
} | ||
scanCount = min(scanCount, path.CountAfterAccess) | ||
return scanCount, true, 0 | ||
} | ||
|
||
// getColumnRangeCounts estimates row count for each range respectively. | ||
func getColumnRangeCounts(sctx context.PlanContext, colID int64, ranges []*ranger.Range, histColl *statistics.HistColl, idxID int64) ([]float64, bool) { | ||
var err error | ||
var count float64 | ||
rangeCounts := make([]float64, len(ranges)) | ||
for i, ran := range ranges { | ||
if idxID >= 0 { | ||
idxHist := histColl.Indices[idxID] | ||
if statistics.IndexStatsIsInvalid(sctx, idxHist, histColl, idxID) { | ||
return nil, false | ||
} | ||
count, err = GetRowCountByIndexRanges(sctx, histColl, idxID, []*ranger.Range{ran}) | ||
} else { | ||
colHist := histColl.Columns[colID] | ||
if statistics.ColumnStatsIsInvalid(colHist, sctx, histColl, colID) { | ||
return nil, false | ||
} | ||
count, err = GetRowCountByColumnRanges(sctx, histColl, colID, []*ranger.Range{ran}) | ||
} | ||
if err != nil { | ||
return nil, false | ||
} | ||
rangeCounts[i] = count | ||
} | ||
return rangeCounts, true | ||
} | ||
|
||
// convertRangeFromExpectedCnt builds new ranges used to estimate row count we need to scan in table scan before finding specified | ||
// number of tuples which fall into input ranges. | ||
func convertRangeFromExpectedCnt(ranges []*ranger.Range, rangeCounts []float64, expectedCnt float64, desc bool) ([]*ranger.Range, float64, bool) { | ||
var i int | ||
var count float64 | ||
var convertedRanges []*ranger.Range | ||
if desc { | ||
for i = len(ranges) - 1; i >= 0; i-- { | ||
if count+rangeCounts[i] >= expectedCnt { | ||
break | ||
} | ||
count += rangeCounts[i] | ||
} | ||
if i < 0 { | ||
return nil, 0, true | ||
} | ||
convertedRanges = []*ranger.Range{{LowVal: ranges[i].HighVal, HighVal: []types.Datum{types.MaxValueDatum()}, LowExclude: !ranges[i].HighExclude, Collators: ranges[i].Collators}} | ||
} else { | ||
for i = 0; i < len(ranges); i++ { | ||
if count+rangeCounts[i] >= expectedCnt { | ||
break | ||
} | ||
count += rangeCounts[i] | ||
} | ||
if i == len(ranges) { | ||
return nil, 0, true | ||
} | ||
convertedRanges = []*ranger.Range{{LowVal: []types.Datum{{}}, HighVal: ranges[i].LowVal, HighExclude: !ranges[i].LowExclude, Collators: ranges[i].Collators}} | ||
} | ||
return convertedRanges, count, false | ||
} | ||
|
||
// getMostCorrCol4Index checks if column in the condition is correlated enough with the first index column. If the condition | ||
// contains multiple columns, return nil and get the max correlation, which would be used in the heuristic estimation. | ||
func getMostCorrCol4Index(path *util.AccessPath, histColl *statistics.Table, threshold float64) (*expression.Column, float64) { | ||
if histColl.ExtendedStats == nil || len(histColl.ExtendedStats.Stats) == 0 { | ||
return nil, 0 | ||
} | ||
var cols []*expression.Column | ||
cols = expression.ExtractColumnsFromExpressions(cols, path.TableFilters, nil) | ||
cols = expression.ExtractColumnsFromExpressions(cols, path.IndexFilters, nil) | ||
if len(cols) == 0 { | ||
return nil, 0 | ||
} | ||
colSet := set.NewInt64Set() | ||
var corr float64 | ||
var corrCol *expression.Column | ||
for _, col := range cols { | ||
if colSet.Exist(col.UniqueID) { | ||
continue | ||
} | ||
colSet.Insert(col.UniqueID) | ||
curCorr := float64(0) | ||
for _, item := range histColl.ExtendedStats.Stats { | ||
if (col.ID == item.ColIDs[0] && path.FullIdxCols[0].ID == item.ColIDs[1]) || | ||
(col.ID == item.ColIDs[1] && path.FullIdxCols[0].ID == item.ColIDs[0]) { | ||
curCorr = item.ScalarVals | ||
break | ||
} | ||
} | ||
if corrCol == nil || math.Abs(corr) < math.Abs(curCorr) { | ||
corrCol = col | ||
corr = curCorr | ||
} | ||
} | ||
if len(colSet) == 1 && math.Abs(corr) >= threshold { | ||
return corrCol, corr | ||
} | ||
return nil, corr | ||
} | ||
|
||
// getMostCorrCol4Handle checks if column in the condition is correlated enough with handle. If the condition | ||
// contains multiple columns, return nil and get the max correlation, which would be used in the heuristic estimation. | ||
func getMostCorrCol4Handle(exprs []expression.Expression, histColl *statistics.Table, threshold float64) (*expression.Column, float64) { | ||
var cols []*expression.Column | ||
cols = expression.ExtractColumnsFromExpressions(cols, exprs, nil) | ||
if len(cols) == 0 { | ||
return nil, 0 | ||
} | ||
colSet := set.NewInt64Set() | ||
var corr float64 | ||
var corrCol *expression.Column | ||
for _, col := range cols { | ||
if colSet.Exist(col.UniqueID) { | ||
continue | ||
} | ||
colSet.Insert(col.UniqueID) | ||
hist, ok := histColl.Columns[col.ID] | ||
if !ok { | ||
continue | ||
} | ||
curCorr := hist.Correlation | ||
if corrCol == nil || math.Abs(corr) < math.Abs(curCorr) { | ||
corrCol = col | ||
corr = curCorr | ||
} | ||
} | ||
if len(colSet) == 1 && math.Abs(corr) >= threshold { | ||
return corrCol, corr | ||
} | ||
return nil, corr | ||
} |
Oops, something went wrong.