Skip to content

Commit

Permalink
This is an automated cherry-pick of pingcap#52424
Browse files Browse the repository at this point in the history
Signed-off-by: ti-chi-bot <[email protected]>
  • Loading branch information
hawkingrei committed Jun 5, 2024
1 parent ca9f24a commit 64a78d7
Show file tree
Hide file tree
Showing 4 changed files with 835 additions and 3 deletions.
310 changes: 310 additions & 0 deletions pkg/planner/core/rule_collect_plan_stats.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,310 @@
// Copyright 2021 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package core

import (
"context"
"time"

"github.com/pingcap/failpoint"
"github.com/pingcap/tidb/pkg/domain"
"github.com/pingcap/tidb/pkg/infoschema"
"github.com/pingcap/tidb/pkg/parser/model"
"github.com/pingcap/tidb/pkg/planner/util"
"github.com/pingcap/tidb/pkg/sessionctx/variable"
"github.com/pingcap/tidb/pkg/statistics"
"github.com/pingcap/tidb/pkg/table"
"github.com/pingcap/tidb/pkg/util/logutil"
"go.uber.org/zap"
)

type collectPredicateColumnsPoint struct{}

func (collectPredicateColumnsPoint) optimize(_ context.Context, plan LogicalPlan, _ *util.LogicalOptimizeOp) (LogicalPlan, bool, error) {
planChanged := false
if plan.SCtx().GetSessionVars().InRestrictedSQL {
return plan, planChanged, nil
}
predicateNeeded := variable.EnableColumnTracking.Load()
syncWait := plan.SCtx().GetSessionVars().StatsLoadSyncWait.Load()
histNeeded := syncWait > 0
predicateColumns, histNeededColumns, visitedPhysTblIDs := CollectColumnStatsUsage(plan, predicateNeeded, histNeeded)
if len(predicateColumns) > 0 {
plan.SCtx().UpdateColStatsUsage(predicateColumns)
}

// Prepare the table metadata to avoid repeatedly fetching from the infoSchema below, and trigger extra sync/async
// stats loading for the determinate mode.
is := plan.SCtx().GetInfoSchema().(infoschema.InfoSchema)
tblID2Tbl := make(map[int64]table.Table)
visitedPhysTblIDs.ForEach(func(physicalTblID int) {
tbl, _ := infoschema.FindTableByTblOrPartID(is, int64(physicalTblID))
if tbl == nil {
return
}
tblID2Tbl[int64(physicalTblID)] = tbl
})

// collect needed virtual columns from already needed columns
// Note that we use the dependingVirtualCols only to collect needed index stats, but not to trigger stats loading on
// the virtual columns themselves. It's because virtual columns themselves don't have statistics, while expression
// indexes, which are indexes on virtual columns, have statistics. We don't waste the resource here now.
dependingVirtualCols := CollectDependingVirtualCols(tblID2Tbl, histNeededColumns)

histNeededIndices := collectSyncIndices(plan.SCtx(), append(histNeededColumns, dependingVirtualCols...), tblID2Tbl)
histNeededItems := collectHistNeededItems(histNeededColumns, histNeededIndices)
if histNeeded && len(histNeededItems) > 0 {
err := RequestLoadStats(plan.SCtx(), histNeededItems, syncWait)
return plan, planChanged, err
}
return plan, planChanged, nil
}

func (collectPredicateColumnsPoint) name() string {
return "collect_predicate_columns_point"
}

type syncWaitStatsLoadPoint struct{}

func (syncWaitStatsLoadPoint) optimize(_ context.Context, plan LogicalPlan, _ *util.LogicalOptimizeOp) (LogicalPlan, bool, error) {
planChanged := false
if plan.SCtx().GetSessionVars().InRestrictedSQL {
return plan, planChanged, nil
}
if plan.SCtx().GetSessionVars().StmtCtx.IsSyncStatsFailed {
return plan, planChanged, nil
}
err := SyncWaitStatsLoad(plan)
return plan, planChanged, err
}

func (syncWaitStatsLoadPoint) name() string {
return "sync_wait_stats_load_point"
}

// RequestLoadStats send load column/index stats requests to stats handle
func RequestLoadStats(ctx PlanContext, neededHistItems []model.StatsLoadItem, syncWait int64) error {
maxExecutionTime := ctx.GetSessionVars().GetMaxExecutionTime()
if maxExecutionTime > 0 && maxExecutionTime < uint64(syncWait) {
syncWait = int64(maxExecutionTime)
}
failpoint.Inject("assertSyncWaitFailed", func(val failpoint.Value) {
if val.(bool) {
if syncWait != 1 {
panic("syncWait should be 1(ms)")
}
}
})
var timeout = time.Duration(syncWait * time.Millisecond.Nanoseconds())
stmtCtx := ctx.GetSessionVars().StmtCtx
err := domain.GetDomain(ctx).StatsHandle().SendLoadRequests(stmtCtx, neededHistItems, timeout)
if err != nil {
stmtCtx.IsSyncStatsFailed = true
if variable.StatsLoadPseudoTimeout.Load() {
logutil.BgLogger().Warn("RequestLoadStats failed", zap.Error(err))
stmtCtx.AppendWarning(err)
return nil
}
logutil.BgLogger().Warn("RequestLoadStats failed", zap.Error(err))
return err
}
return nil
}

// SyncWaitStatsLoad sync-wait for stats load until timeout
func SyncWaitStatsLoad(plan LogicalPlan) error {
stmtCtx := plan.SCtx().GetSessionVars().StmtCtx
if len(stmtCtx.StatsLoad.NeededItems) <= 0 {
return nil
}
err := domain.GetDomain(plan.SCtx()).StatsHandle().SyncWaitStatsLoad(stmtCtx)
if err != nil {
stmtCtx.IsSyncStatsFailed = true
if variable.StatsLoadPseudoTimeout.Load() {
logutil.BgLogger().Warn("SyncWaitStatsLoad failed", zap.Error(err))
stmtCtx.AppendWarning(err)
return nil
}
logutil.BgLogger().Error("SyncWaitStatsLoad failed", zap.Error(err))
return err
}
return nil
}

// CollectDependingVirtualCols collects the virtual columns that depend on the needed columns, and returns them in a new slice.
//
// Why do we need this?
// It's mainly for stats sync loading.
// Currently, virtual columns themselves don't have statistics. But expression indexes, which are indexes on virtual
// columns, have statistics. We need to collect needed virtual columns, then needed expression index stats can be
// collected for sync loading.
// In normal cases, if a virtual column can be used, which means related statistics may be needed, the corresponding
// expressions in the query must have already been replaced with the virtual column before here. So we just need to treat
// them like normal columns in stats sync loading, which means we just extract the Column from the expressions, the
// virtual columns we want will be there.
// However, in some cases (the mv index case now), the expressions are not replaced with the virtual columns before here.
// Instead, we match the expression in the query against the expression behind the virtual columns after here when
// building the access paths. This means we are unable to known what virtual columns will be needed by just extracting
// the Column from the expressions here. So we need to manually collect the virtual columns that may be needed.
//
// Note 1: As long as a virtual column depends on the needed columns, it will be collected. This could collect some virtual
// columns that are not actually needed.
// It's OK because that's how sync loading is expected. Sync loading only needs to ensure all actually needed stats are
// triggered to be loaded. Other logic of sync loading also works like this.
// If we want to collect only the virtual columns that are actually needed, we need to make the checking logic here exactly
// the same as the logic for generating the access paths, which will make the logic here very complicated.
//
// Note 2: Only direct dependencies are considered here.
// If a virtual column depends on another virtual column, and the latter depends on the needed columns, then the former
// will not be collected.
// For example: create table t(a int, b int, c int as (a+b), d int as (c+1)); If a is needed, then c will be collected,
// but d will not be collected.
// It's because currently it's impossible that statistics related to indirectly depending columns are actually needed.
// If we need to check indirect dependency some day, we can easily extend the logic here.
func CollectDependingVirtualCols(tblID2Tbl map[int64]table.Table, neededItems []model.StatsLoadItem) []model.StatsLoadItem {
generatedCols := make([]model.StatsLoadItem, 0)

// group the neededItems by table id
tblID2neededColIDs := make(map[int64][]int64, len(tblID2Tbl))
for _, item := range neededItems {
if item.IsIndex {
continue
}
tblID2neededColIDs[item.TableID] = append(tblID2neededColIDs[item.TableID], item.ID)
}

// process them by table id
for tblID, colIDs := range tblID2neededColIDs {
tbl := tblID2Tbl[tblID]
if tbl == nil {
continue
}
// collect the needed columns on this table into a set for faster lookup
colNameSet := make(map[string]struct{}, len(colIDs))
for _, colID := range colIDs {
name := tbl.Meta().FindColumnNameByID(colID)
if name == "" {
continue
}
colNameSet[name] = struct{}{}
}
// iterate columns in this table, and collect the virtual columns that depend on the needed columns
for _, col := range tbl.Cols() {
// only handles virtual columns
if !col.IsVirtualGenerated() {
continue
}
// If this column is already needed, then skip it.
if _, ok := colNameSet[col.Name.L]; ok {
continue
}
// If there exists a needed column that is depended on by this virtual column,
// then we think this virtual column is needed.
for depCol := range col.Dependences {
if _, ok := colNameSet[depCol]; ok {
generatedCols = append(generatedCols, model.StatsLoadItem{TableItemID: model.TableItemID{TableID: tblID, ID: col.ID, IsIndex: false}, FullLoad: true})
break
}
}
}
}
return generatedCols
}

// collectSyncIndices will collect the indices which includes following conditions:
// 1. the indices contained the any one of histNeededColumns, eg: histNeededColumns contained A,B columns, and idx_a is
// composed up by A column, then we thought the idx_a should be collected
// 2. The stats condition of idx_a can't meet IsFullLoad, which means its stats was evicted previously
func collectSyncIndices(ctx PlanContext,
histNeededColumns []model.StatsLoadItem,
tblID2Tbl map[int64]table.Table,
) map[model.TableItemID]struct{} {
histNeededIndices := make(map[model.TableItemID]struct{})
stats := domain.GetDomain(ctx).StatsHandle()
for _, column := range histNeededColumns {
if column.IsIndex {
continue
}
tbl := tblID2Tbl[column.TableID]
if tbl == nil {
continue
}
colName := tbl.Meta().FindColumnNameByID(column.ID)
if colName == "" {
continue
}
for _, idx := range tbl.Indices() {
if idx.Meta().State != model.StatePublic {
continue
}
idxCol := idx.Meta().FindColumnByName(colName)
idxID := idx.Meta().ID
if idxCol != nil {
tblStats := stats.GetTableStats(tbl.Meta())
if tblStats == nil || tblStats.Pseudo {
continue
}
_, loadNeeded := tblStats.IndexIsLoadNeeded(idxID)
if !loadNeeded {
continue
}
histNeededIndices[model.TableItemID{TableID: column.TableID, ID: idxID, IsIndex: true}] = struct{}{}
}
}
}
return histNeededIndices
}

func collectHistNeededItems(histNeededColumns []model.StatsLoadItem, histNeededIndices map[model.TableItemID]struct{}) (histNeededItems []model.StatsLoadItem) {
histNeededItems = make([]model.StatsLoadItem, 0, len(histNeededColumns)+len(histNeededIndices))
for idx := range histNeededIndices {
histNeededItems = append(histNeededItems, model.StatsLoadItem{TableItemID: idx, FullLoad: true})
}
histNeededItems = append(histNeededItems, histNeededColumns...)
return
}

func recordTableRuntimeStats(sctx PlanContext, tbls map[int64]struct{}) {
tblStats := sctx.GetSessionVars().StmtCtx.TableStats
if tblStats == nil {
tblStats = map[int64]any{}
}
for tblID := range tbls {
tblJSONStats, skip, err := recordSingleTableRuntimeStats(sctx, tblID)
if err != nil {
logutil.BgLogger().Warn("record table json stats failed", zap.Int64("tblID", tblID), zap.Error(err))
}
if tblJSONStats == nil && !skip {
logutil.BgLogger().Warn("record table json stats failed due to empty", zap.Int64("tblID", tblID))
}
tblStats[tblID] = tblJSONStats
}
sctx.GetSessionVars().StmtCtx.TableStats = tblStats
}

func recordSingleTableRuntimeStats(sctx PlanContext, tblID int64) (stats *statistics.Table, skip bool, err error) {
dom := domain.GetDomain(sctx)
statsHandle := dom.StatsHandle()
is := sctx.GetDomainInfoSchema().(infoschema.InfoSchema)
tbl, ok := is.TableByID(tblID)
if !ok {
return nil, false, nil
}
tableInfo := tbl.Meta()
stats = statsHandle.GetTableStats(tableInfo)
// Skip the warning if the table is a temporary table because the temporary table doesn't have stats.
skip = tableInfo.TempTableType != model.TempTableNone
return stats, skip, nil
}
Loading

0 comments on commit 64a78d7

Please sign in to comment.