Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add diagonal_with_transform #1233

Merged
merged 2 commits into from
Oct 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/src/quad_forms/basics.md
Original file line number Diff line number Diff line change
Expand Up @@ -115,6 +115,7 @@ gram_matrix(::AbstractSpace{T}, ::Vector{Vector{U}}) where {T, U}
inner_product(::AbstractSpace, ::Vector, ::Vector)
orthogonal_basis(::AbstractSpace)
diagonal(::AbstractSpace)
diagonal_with_transform(::AbstractSpace)
restrict_scalars(::AbstractSpace, ::QQField, ::FieldElem)
```

Expand Down
16 changes: 12 additions & 4 deletions src/QuadForm/Herm/Spaces.jl
Original file line number Diff line number Diff line change
Expand Up @@ -148,14 +148,22 @@ inner_product(V::HermSpace{S,T,U,W}, v::U, w::U) where {S,T,U,W}= v*gram_matrix(
#
################################################################################

function diagonal(V::HermSpace)
diagonal(V::HermSpace) = _diagonal(V, false)[1]

diagonal_with_transform(V::HermSpace) = _diagonal(V)

function _diagonal(V::HermSpace, with_transform::Bool = true)
E = base_ring(V)
g = gram_matrix(V)
k, K = left_kernel(g)
B = complete_to_basis(K)
g = B[k+1:end,:]*g*transpose(B[k+1:end,:])
D, _ = _gram_schmidt(g, involution(V))
D = append!(zeros(base_ring(V),k), diagonal(D))
return map(fixed_field(V), D)
D, U = _gram_schmidt(g, involution(V))
diagE = append!(zeros(base_ring(V),k), diagonal(D))
diagK = map(fixed_field(V), diagE)
!with_transform && return diagK, matrix(E, 0, 0, elem_type(E)[])
B[k+1:end, :] = U*view(B, k+1:nrows(B), :)
return diagK, B
end

################################################################################
Expand Down
14 changes: 11 additions & 3 deletions src/QuadForm/Quad/Spaces.jl
Original file line number Diff line number Diff line change
Expand Up @@ -190,13 +190,21 @@ end
#
################################################################################

function diagonal(V::QuadSpace)
diagonal(V::QuadSpace) = _diagonal(V, false)[1]

diagonal_with_transform(V::QuadSpace) = _diagonal(V)

function _diagonal(V::QuadSpace, with_transform::Bool = true)
E = base_ring(V)
g = gram_matrix(V)
k, K = left_kernel(g)
B = complete_to_basis(K)
g = B[k+1:end,:]*g*transpose(B[k+1:end,:])
D, _ = _gram_schmidt(g, involution(V))
return append!(zeros(base_ring(V),k),diagonal(D))
D, U = _gram_schmidt(g, involution(V))
diag = append!(zeros(base_ring(V), k), diagonal(D))
!with_transform && return diag, matrix(E, 0, 0, elem_type(E)[])
B[k+1:end, :] = U*view(B, k+1:nrows(B), :)
return diag, B
end

################################################################################
Expand Down
15 changes: 14 additions & 1 deletion src/QuadForm/Spaces.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
export ambient_space, rank, gram_matrix, inner_product, involution, is_hermitian, is_quadratic, is_regular,
is_local_square, is_isometric, is_rationally_isometric, is_isotropic, is_isotropic_with_vector, quadratic_space,
hermitian_space, diagonal, invariants, hasse_invariant, witt_invariant, orthogonal_basis, fixed_field,
restrict_scalars, orthogonal_complement, orthogonal_projection
restrict_scalars, orthogonal_complement, orthogonal_projection, diagonal_with_transform

################################################################################
#
Expand Down Expand Up @@ -319,6 +319,19 @@ The elements are contained in the fixed field of `V`.
"""
diagonal(V::AbstractSpace)

@doc raw"""
diagonal_with_transform(V::AbstractSpace) -> Vector{FieldElem},
MatElem{FieldElem}

Return a vector of elements $a_1,\dotsc,a_n$ such that the space `V` is
isometric to the diagonal space $\langle a_1,\dotsc,a_n \rangle$. The second
output is a matrix `U` whose rows span an orthogonal basis of `V` for which the
Gram matrix is given by the diagonal matrix of the $a_i$'s.

The elements are contained in the fixed field of `V`.
"""
diagonal_with_transform(V::AbstractSpace)

################################################################################
#
# Gram-Schmidt
Expand Down
9 changes: 9 additions & 0 deletions test/QuadForm/Herm/Spaces.jl
Original file line number Diff line number Diff line change
Expand Up @@ -130,3 +130,12 @@
@test is_isometric(V1, V2)

end

@testset "diagonal with transform" begin
E, b = cyclotomic_field_as_cm_extension(3)
K = base_field(E)
s = involution(E)
Vh = hermitian_space(E, E[1 b 1; s(b) 4 s(b); 1 b 1])
diag, U = @inferred diagonal_with_transform(Vh)
@test diagonal(map_entries(K, U*gram_matrix(Vh)*map_entries(s, transpose(U)))) == diag
end
7 changes: 7 additions & 0 deletions test/QuadForm/Quad/Spaces.jl
Original file line number Diff line number Diff line change
Expand Up @@ -524,3 +524,10 @@ end
@test !is_isotropic(V, 5)
@test_throws ArgumentError is_isotropic(V, 4)
end

@testset "diagonal with transform" begin
K, a = cyclotomic_field(8)
V = quadratic_space(K, K[a 3 a; 3 3 3; a 3 a])
diag, U = @inferred diagonal_with_transform(V)
@test diagonal(U*gram_matrix(V)*transpose(U)) == diag
end
Loading