Skip to content

Commit

Permalink
add mult. group
Browse files Browse the repository at this point in the history
  • Loading branch information
fieker committed Nov 11, 2024
1 parent 3267ecd commit c0cccea
Show file tree
Hide file tree
Showing 3 changed files with 122 additions and 13 deletions.
3 changes: 3 additions & 0 deletions src/LocalField/Conjugates.jl
Original file line number Diff line number Diff line change
Expand Up @@ -269,6 +269,9 @@ end
function conjugates_log(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, C::qAdicConj, n::Int = 10; all::Bool = false, flat::Bool = true)
first = true
local res::Vector{QadicFieldElem}
if length(a.fac) == 0
res = conjugates_log(one(base_ring(parent(a))), C, n, flat = false, all = false)
end
for (k, v) = a.fac
try
y = conjugates_log(k, C, n, flat = false, all = false)
Expand Down
127 changes: 115 additions & 12 deletions src/NumField/NfAbs/MultDep.jl
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ function syzygies_sunits_mod_units(A::Vector{AbsSimpleNumFieldElem}; use_ge::Boo
end
h, t = Hecke.hnf_with_transform(matrix(M))
h = h[1:rank(h), :]
return h, t[nrows(h)+1:end, :], cp
return t[1:nrows(h), :], t[nrows(h)+1:end, :], cp
# THINK! do we want or not...
# - M is naturally sparse, hence it makes sense
# - for this application we need all units, hence the complete
Expand Down Expand Up @@ -192,6 +192,10 @@ function valuation(a::AbsSimpleNumFieldElem, p::GeIdeal)
return valuation(a, p.a)
end

#TODO: don't use Gram Schidt over Q, use reals. If M is LLL, then
# a low precision should be OK
#TODO: an interface to reduce several v
#TODO: a sane implementation that is more memory friendly (views, ...)
"""
reduce the rows of v modulo the lattice spanned by the rows of M.
M should be LLL reduced.
Expand All @@ -213,6 +217,8 @@ A a vector of units in fac-elem form. Find matrices U and V s.th.
A^U is a basis for <A>/Tor
and
A^V is a generating system for the relations of A in Units/Tor
The pAdic Ctx is returned as well
"""
function syzygies_units_mod_tor(A::Vector{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}})
p = next_prime(100)
Expand Down Expand Up @@ -288,7 +294,7 @@ function syzygies_units_mod_tor(A::Vector{FacElem{AbsSimpleNumFieldElem, AbsSimp
if !verify_gamma(push!(copy(u), a), gamma, ZZRingElem(p)^prec)
prec *= 2
@vprint :qAdic 1 "increase prec to ", prec
lu = matrix([conjugates_log(x, C, prec, all = false, flat = true) for x = u])'
lu = transpose(matrix([conjugates_log(x, C, prec, all = false, flat = true) for x = u]))
continue
end
@assert length(gamma) == length(u)+1
Expand Down Expand Up @@ -355,14 +361,14 @@ function syzygies_units_mod_tor(A::Vector{FacElem{AbsSimpleNumFieldElem, AbsSimp
#rels: A[tor], .. * V
nt = zero_matrix(ZZ, length(A), length(A))
for i=1:length(indep)
nt[indep[i], i] = 1
nt[i, indep[i]] = 1
end
for i=1:length(dep)
nt[dep[i], i+length(indep)] = 1
nt[i+length(indep), dep[i]] = 1
end
@assert matrix([collect(1:length(A))]) * nt == matrix([vcat(indep, dep)])
rel = nt*transpose(V)
return nt*transpose(U), rel
# @assert nt*matrix([collect(1:length(A))]) == matrix([vcat(indep, dep)])
rel = V*nt
return U*nt, rel, C
end


Expand Down Expand Up @@ -478,21 +484,118 @@ function syzygies_tor(A::Vector{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField
k, mk = kernel(h)
i, mi = image(h)
@assert ngens(i) == 1
return preimage(h, mi(i[1])).coeff, vcat([mk(x).coeff for x = gens(k)]...)
return preimage(h, mi(i[1])).coeff, vcat([mk(x).coeff for x = gens(k)]...), order(i[1])
end
end

"""
@doc raw"""
syzygies(A::Vector{AbsSimpleNumFieldElem}) -> ZZMatrix
Given non-zero elements A[i] in K, find a basis for the relations, returned
as a matrix.
"""
function syzygies(A::Vector{AbsSimpleNumFieldElem}; use_ge::Bool = false, max_ord::Union{Nothing, AbsSimpleNumFieldOrder} = nothing)
_, t, _ = syzygies_sunits_mod_units(A; use_ge, max_ord)
u = [FacElem(A, t[i, :]) for i = 1:nrows(t)]
_, tt = syzygies_units_mod_tor(u)
u = Hecke._transform(u, tt)
_, ttt = syzygies_tor(u)
return ttt*transpose(tt)*t
u = Hecke._transform(u, transpose(tt))
_, ttt, _ = syzygies_tor(u)
return ttt*tt*t
end

@doc raw"""
multiplicative_group(A::Vector{AbsSimpleNumFieldElem}) -> FinGenAbGroup, Map
Return the subgroup of the multiplicative group of the number field generated
by the elements in `A` as an abstract abelian group together with a map
mapping group elements to number field elements and vice-versa.
"""
function Hecke.multiplicative_group(A::Vector{AbsSimpleNumFieldElem}; use_ge::Bool = false, max_ord::Union{Nothing, AbsSimpleNumFieldOrder} = nothing, task::Symbol = :all)

S, T, cp = syzygies_sunits_mod_units(A; use_ge, max_ord)
u = [FacElem(A, T[i, :]) for i = 1:nrows(T)]
g1 = [FacElem(A, S[i, :]) for i = 1:nrows(S)] #gens for mult grp/ units

U, T, C = syzygies_units_mod_tor(u)
g2 = Hecke._transform(u, transpose(U))
u = Hecke._transform(u, transpose(T))

Ut, _, o = syzygies_tor(u)

t = evaluate(Hecke._transform(u, transpose(Ut))[1])

G = abelian_group(vcat([0 for i=1:length(g1)+length(g2)], [o]))
g = vcat(g1, g2, [FacElem(t)])

function im(a::FinGenAbGroupElem)
@assert parent(a) == G
return prod(g[i]^a[i] for i = 1:length(g))
end

local log_mat::Union{Generic.MatSpaceElem{PadicFieldElem}, Nothing} = nothing
local prec::Int = 20
local gamma::Vector{ZZRingElem}

function pr(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField})
@assert base_ring(parent(a)) == parent(A[1])
c = ZZRingElem[]
for i=1:length(cp)
v = valuation(a, cp[i])
push!(c, divexact(v, valuation(g1[i], cp[i])))
a *= g1[i]^-c[end]
end

if log_mat === nothing
log_mat = matrix([conjugates_log(x, C, prec, all = false, flat = true) for x = g2])
end
while true
log_a = matrix([conjugates_log(a, C, prec, all = false, flat = true)])

lv = vcat(log_mat, log_a)
#check_precision and change
@vtime :qAdic 1 k = kernel(lv, side = :left)

@assert nrows(k) < 2
if nrows(k) == 0
error("not in the image")
else # length == 1 extend the module
@vprint :qAdic 1 "looking for relation\n"
s = QQFieldElem[]
for x in k[1, :]
@vtime :qAdic 1 y = lift_reco(FlintQQ, x, reco = true)
if y === nothing
prec *= 2
@vprint :qAdic 1 "increase prec to ", prec
log_mat = transpose(matrix([conjugates_log(x, C, prec, all = false, flat = true) for x = g2]))
break
end
push!(s, y)
end
if length(s) < ncols(k)
continue
end
d = reduce(lcm, map(denominator, s))
gamma = ZZRingElem[FlintZZ(x*d)::ZZRingElem for x = s]
@assert reduce(gcd, gamma) == 1 # should be a primitive relation
if !verify_gamma(push!(copy(g2), a), gamma, prime(base_ring(log_mat), prec))
prec *= 2
@vprint :qAdic 1 "increase prec to ", prec
log_mat = transpose(matrix([conjugates_log(x, C, prec, all = false, flat = true) for x = g2]))
continue
end
@assert length(gamma) == length(g2)+1
break
end
end
for i=1:length(gamma)-1
push!(c, divexact(gamma[i], -gamma[end]))
end
_, _c, _ = syzygies_tor(typeof(a)[g[end], a*prod(g2[i]^-gamma[i] for i=1:length(gamma)-1)])

push!(c, divexact(_c[1,1], _c[1,2]))
return G(c)
end
return G, MapFromFunc(G, parent(g1[1]), im, pr)
end

export syzygies
Expand Down
5 changes: 4 additions & 1 deletion test/NumField/NfAbs/NfAbs.jl
Original file line number Diff line number Diff line change
Expand Up @@ -88,14 +88,17 @@ end


@testset "NumField/NfAbs/MultDep" begin
k, a = wildanger_field(5,13);
k, a = wildanger_field(5,13; cached = false);
zk = lll(maximal_order(k))
class_group(zk)
h = zk.__attrs[:ClassGrpCtx]
r = vcat(h.R_gen, h.R_rel);
r = [x for x = r if isa(x, AbsSimpleNumFieldElem)]
q = Hecke.syzygies(r)
@test all(isone, evaluate(FacElem(r, q[i, :])) for i=1:nrows(q))

U, mU = Hecke.multiplicative_group(r)
@test preimage(mU, mU(U[2])) == U[2]
end


0 comments on commit c0cccea

Please sign in to comment.