Skip to content

Commit

Permalink
Rc fsubfields2 (#1552)
Browse files Browse the repository at this point in the history
* add tests

* more possibilities for subfields
  • Loading branch information
fieker authored Jun 21, 2024
1 parent e862a21 commit be7d4c0
Show file tree
Hide file tree
Showing 2 changed files with 64 additions and 2 deletions.
63 changes: 61 additions & 2 deletions src/RCF/conductor.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1285,21 +1285,80 @@ function small_knot(k::AbsSimpleNumField, stable::Int = 5)
end

@doc raw"""
subfields(C::ClassField; degree::Int) -> Vector{ClassField}
subfields(C::ClassField; degree::Int, is_normal, type) -> Vector{ClassField}
Find all subfields of $C$ over the base field.
If the optional keyword argument `degree` is positive, then only those with prescribed
degree will be returned.
If the optional keyword `is_normal` is given, then only those that are normal
over the field fixed by the automorphisms is returned. For normal base fields,
this amounts to extensions that are normal over `Q`.
If the optional keyword `is_normal` is set to a list of automorphisms, then
only those wil be considered.
`type` can be set to the desired relative Galois group, given as a vector
of integers descibing the structure.
!!! note
This will not find all subfields over $\mathbf{Q}$, but only the ones
sharing the same base field.
"""
function subfields(C::ClassField; degree::Int = -1)
function subfields(C::ClassField; arg...)
degree = -1
if haskey(arg, :degree)
val = arg[:degree]
@req isa(val, Int) "degree must be an integer"
degree = Int(val)
end

mR = C.rayclassgroupmap
mQ = C.quotientmap

k = base_field(C)

if haskey(arg, :type)
val = arg[:type]
@req isa(val, Vector{Int}) "type must be a vector of ints"
qtype = Int[x for x = val]
end

if haskey(arg, :is_normal)
val = arg[:is_normal]
if val == is_normal
aut = automorphism_list(k)
elseif isa(val, Vector{<:Map{AbsSimpleNumField, AbsSimpleNumField}})
aut = val
else
error("is_normal must be either emtpy or a list of automorphisms")
end
aut = small_generating_set(aut)
c, inf = conductor(C)
if any(x-> c != induce_image(x, c), aut)
error("modulus not stable under automorphisms")
end
s1 = Set(inf)
if any(x -> s1 != Set(induce_image(x, y) for y = s1), aut)
error("modulus not stable under automorphisms")
end
C = rewrite_with_conductor(C)
mR = C.rayclassgroupmap
mQ = C.quotientmap
act = induce_action(C, aut)
if haskey(arg, :type)
@req !haskey(arg, :degree) "degree and type are exclusive"
s = stable_subgroups(codomain(mQ), act; quotype = qtype, op = (x,y) -> quo(x, y, false)[2])
else
s = stable_subgroups(codomain(mQ), act; op = (x,y) -> quo(x, y, false)[2])
if degree != -1
s = filter(x->order(codomain(x)) == degree, collect(s))
end
end
return ClassField[ray_class_field(mR, FinGenAbGroupHom(mQ*x)) for x = s]
end

if degree > 0
return ClassField[ray_class_field(mR, FinGenAbGroupHom(mQ*x)) for x = subgroups(codomain(mQ), index = degree, fun = (x,y) -> quo(x, y, false)[2])]
else
Expand Down
3 changes: 3 additions & 0 deletions test/RCF/rcf.jl
Original file line number Diff line number Diff line change
Expand Up @@ -144,6 +144,9 @@
@test length(subfields(r)) == 5
@test length(subfields(r; degree = 2)) == 3
@test is_central(r)
@test length(subfields(r; degree = 2, is_normal)) == 3
@test length(subfields(r; type = [2], is_normal)) == 3
@test length(subfields(r; is_normal = automorphism_list(base_field(r)))) == 5

K = quadratic_field(5)[1]
OK = maximal_order(K)
Expand Down

0 comments on commit be7d4c0

Please sign in to comment.