Skip to content

Commit

Permalink
Switch from FiniteField to finite_field
Browse files Browse the repository at this point in the history
Command used to create this PR:

    git grep -l -w FiniteField | xargs perl -pi -e 's;\bFiniteField\b;finite_field;g'
  • Loading branch information
fingolfin committed Sep 29, 2023
1 parent 8f64388 commit 379ee51
Show file tree
Hide file tree
Showing 24 changed files with 63 additions and 63 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ PolymakeExt = "Polymake"
[compat]
AbstractAlgebra = "^0.32.1"
GAP = "0.9.6"
Nemo = "^0.36.0"
Nemo = "^0.36.1"
Polymake = "0.10, 0.11"
RandomExtensions = "0.4.3"
julia = "1.6"
Expand Down
8 changes: 4 additions & 4 deletions examples/Plesken.jl
Original file line number Diff line number Diff line change
Expand Up @@ -214,7 +214,7 @@ function plesken_kummer(p::ZZRingElem, r::Int, s::Int)


if (p-1) % r == 0
R = FiniteField(p)
R = finite_field(p)
descent = false
else
f = cyclotomic(r, polynomial_ring(FlintZZ)[2])
Expand Down Expand Up @@ -283,7 +283,7 @@ end

function plesken_as(p::ZZRingElem, r::Int, s::Int)
@assert p==r
R = FiniteField(p)
R = finite_field(p)
g = R(-1)
t = 1
while s>1
Expand All @@ -300,12 +300,12 @@ function plesken_2(p::ZZRingElem, r::Int, s::Int)
@assert r==2
#Plesken, 1.27
if valuation(p-1, 2) >1
R = FiniteField(p)
R = finite_field(p)
g = primitive_root_r_div_qm1(p, r)
t = 1
else
@assert valuation(p+1, 2)>1
R = FiniteField(p)
R = finite_field(p)
Rx,x = polynomial_ring(R, "t_1")
R = residue_ring(Rx, x^2+1)
g = primitive_root_r_div_qm1(R, 2)
Expand Down
2 changes: 1 addition & 1 deletion src/EllCrv/Finite.jl
Original file line number Diff line number Diff line change
Expand Up @@ -990,7 +990,7 @@ function _embed_into_p2(j, L)
if degree(p) <= 1
return L(_to_z(j))
end
F, a = FiniteField(p)
F, a = finite_field(p)

Check warning on line 993 in src/EllCrv/Finite.jl

View check run for this annotation

Codecov / codecov/patch

src/EllCrv/Finite.jl#L993

Added line #L993 was not covered by tests
e = embed(F, L)
return e(gen(F))
end
Expand Down
2 changes: 1 addition & 1 deletion src/GenOrd/Ideal.jl
Original file line number Diff line number Diff line change
Expand Up @@ -576,7 +576,7 @@ end
################################################################################

function Hecke.residue_field(R::fpPolyRing, p::fpPolyRingElem)
K, _ = FiniteField(p,"o")
K, _ = finite_field(p,"o")
return K, MapFromFunc(R, K, x->K(x), y->R(y))
end

Expand Down
2 changes: 1 addition & 1 deletion src/LocalField/LocalField.jl
Original file line number Diff line number Diff line change
Expand Up @@ -465,7 +465,7 @@ function residue_field(K::LocalField{S, UnramifiedLocalField}) where {S <: Field
Fpt = polynomial_ring(ks, cached = false)[1]
g = defining_polynomial(K)
f = Fpt([ks(mks(coeff(g, i))) for i=0:degree(K)])
kk = Native.FiniteField(f)[1]
kk = Native.finite_field(f)[1]
bas = basis(K)
u = gen(kk)
function proj(a::Hecke.LocalFieldElem)
Expand Down
2 changes: 1 addition & 1 deletion src/LocalField/qAdic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ function residue_field(Q::FlintQadicField)
Fpt = polynomial_ring(Fp, cached = false)[1]
g = defining_polynomial(Q) #no Conway if parameters are too large!
f = Fpt([Fp(lift(coeff(g, i))) for i=0:degree(Q)])
k = Native.FiniteField(f, "o", cached = false)[1]
k = Native.finite_field(f, "o", cached = false)[1]
pro = function(x::qadic)
v = valuation(x)
v < 0 && error("elt non integral")
Expand Down
12 changes: 6 additions & 6 deletions src/Misc/Plesken.jl
Original file line number Diff line number Diff line change
Expand Up @@ -78,14 +78,14 @@ end
function _presentation_artin_schreier(F, n)
p = characteristic(F)
Fx, x = polynomial_ring(F, "x", cached = false)
F1, a = FiniteField(x^p-x-1, "a", cached = false, check = false)
F1, a = finite_field(x^p-x-1, "a", cached = false, check = false)

Check warning on line 81 in src/Misc/Plesken.jl

View check run for this annotation

Codecov / codecov/patch

src/Misc/Plesken.jl#L81

Added line #L81 was not covered by tests
F1y, y = polynomial_ring(F1, "y1", cached = false)
el = a
for i = 2:n
pol = y^p-y-el^(p-1)
Frel = FiniteField(pol, "a$i", cached = false, check = false)[1]
Frel = finite_field(pol, "a$i", cached = false, check = false)[1]

Check warning on line 86 in src/Misc/Plesken.jl

View check run for this annotation

Codecov / codecov/patch

src/Misc/Plesken.jl#L86

Added line #L86 was not covered by tests
abs_def_pol = norm(pol)
F1, gF1 = FiniteField(abs_def_pol, "a", check = false, cached = false)
F1, gF1 = finite_field(abs_def_pol, "a", check = false, cached = false)

Check warning on line 88 in src/Misc/Plesken.jl

View check run for this annotation

Codecov / codecov/patch

src/Misc/Plesken.jl#L88

Added line #L88 was not covered by tests
mp = hom(F1, Frel, gen(Frel))
el = mp\(gen(Frel)*el)
F1y, y = polynomial_ring(F1, "y1", cached = false)
Expand Down Expand Up @@ -132,7 +132,7 @@ function _presentation_kummer(F, r::T, n::Int) where T <: Union{ZZRingElem, Int}
def_pol1 = Fx()
setcoeff!(def_pol1, 0, -pr_root)
setcoeff!(def_pol1, r^n, one(F))
F1, gF1 = FiniteField(def_pol1, "a1", cached = false, check = false)
F1, gF1 = finite_field(def_pol1, "a1", cached = false, check = false)

Check warning on line 135 in src/Misc/Plesken.jl

View check run for this annotation

Codecov / codecov/patch

src/Misc/Plesken.jl#L135

Added line #L135 was not covered by tests
return F1
end

Expand All @@ -151,7 +151,7 @@ function _presentation_generic(F, r::T, n::Int) where T <: Union{ZZRingElem, Int
ind = i
end
end
F0, gF0 = FiniteField(lF[ind], "a0", cached = false)
F0, gF0 = finite_field(lF[ind], "a0", cached = false)

Check warning on line 154 in src/Misc/Plesken.jl

View check run for this annotation

Codecov / codecov/patch

src/Misc/Plesken.jl#L154

Added line #L154 was not covered by tests
f = degree(F0)
Fn = _presentation_kummer(F0, r, n)
#Now, I need to take the trace.
Expand All @@ -163,7 +163,7 @@ function _presentation_generic(F, r::T, n::Int) where T <: Union{ZZRingElem, Int
g = g^e
t = add!(t, t, g)
end
return FiniteField(_minpoly(t, r^n), "a", cached = false, check = false)[1]
return finite_field(_minpoly(t, r^n), "a", cached = false, check = false)[1]

Check warning on line 166 in src/Misc/Plesken.jl

View check run for this annotation

Codecov / codecov/patch

src/Misc/Plesken.jl#L166

Added line #L166 was not covered by tests
end

function _find_exponent(f::Int, p::ZZRingElem, r::ZZRingElem, n::Int)
Expand Down
2 changes: 1 addition & 1 deletion src/Misc/Poly.jl
Original file line number Diff line number Diff line change
Expand Up @@ -882,7 +882,7 @@ specified, return the `n`-th cyclotomic polynomial over the integers.
# Examples
```jldoctest
julia> F, _ = FiniteField(5)
julia> F, _ = finite_field(5)
(Finite field of characteristic 5, 1)
julia> Ft, _ = F["t"]
Expand Down
6 changes: 3 additions & 3 deletions src/Misc/RelFiniteField.jl
Original file line number Diff line number Diff line change
Expand Up @@ -547,7 +547,7 @@ end
#
################################################################################

function Native.FiniteField(f::T, s::String = "a" ; cached::Bool = true, check::Bool = true) where T <: Union{fqPolyRepPolyRingElem, FqPolyRepPolyRingElem}
function Native.finite_field(f::T, s::String = "a" ; cached::Bool = true, check::Bool = true) where T <: Union{fqPolyRepPolyRingElem, FqPolyRepPolyRingElem}
if check
@assert is_irreducible(f)
end
Expand All @@ -556,7 +556,7 @@ function Native.FiniteField(f::T, s::String = "a" ; cached::Bool = true, check::
return F, gen(F)
end

function Native.FiniteField(f::PolyElem{T}, s::String = "a" ; cached::Bool = true, check::Bool = true) where T <: RelFinFieldElem
function Native.finite_field(f::PolyElem{T}, s::String = "a" ; cached::Bool = true, check::Bool = true) where T <: RelFinFieldElem
if check
@assert is_irreducible(f)
end
Expand Down Expand Up @@ -666,7 +666,7 @@ function absolute_field(F::RelFinField{T}; cached::Bool = true) where T <: FinFi
end
p = _char(F)
d = absolute_degree(F)
K, gK = Native.FiniteField(p, d, "a", cached = cached)
K, gK = Native.finite_field(p, d, "a", cached = cached)
k, mk = absolute_field(base_field(F))
def_pol_new = map_coefficients(pseudo_inv(mk), defining_polynomial(F))
img_gen_k = roots(K, defining_polynomial(k))[1]
Expand Down
2 changes: 1 addition & 1 deletion src/NumField/NfAbs/Simplify.jl
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@ function _sieve_primitive_elements(B::Vector{NfAbsNSElem})
Zx = polynomial_ring(FlintZZ, "x", cached = false)[1]
pols = [Zx(to_univariate(Globals.Qx, x)) for x in K.pol]
p, d = _find_prime(pols)
F = Native.FiniteField(p, d, "w", cached = false)[1]
F = Native.finite_field(p, d, "w", cached = false)[1]
Fp = Native.GF(p, cached = false)
Fpt = polynomial_ring(Fp, ngens(K))[1]
Ft = polynomial_ring(F, "t", cached = false)[1]
Expand Down
4 changes: 2 additions & 2 deletions src/NumFieldOrd/NfOrd/Hensel.jl
Original file line number Diff line number Diff line change
Expand Up @@ -157,7 +157,7 @@ function _roots_hensel(f::Generic.Poly{nf_elem};
lp = factor(gp).fac

#set up the mod p data:
#need FiniteField as I need to factor (roots)
#need finite_field as I need to factor (roots)
# I want to find a residue field with less roots
for gp_factor in keys(lp)
deg_p = degree(gp_factor)
Expand Down Expand Up @@ -425,7 +425,7 @@ function _hensel(f::Generic.Poly{nf_elem},
#later we'll get the HNF matrix for selected powers as well

#set up the mod p data:
#need FiniteField as I need to factor (roots)
#need finite_field as I need to factor (roots)

rt = roots(fp)

Expand Down
2 changes: 1 addition & 1 deletion src/NumFieldOrd/NfOrd/Ideal/Prime.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1395,7 +1395,7 @@ function prime_dec_nonindex(O::NfAbsOrd{NfAbsNS,NfAbsNSElem}, p::IntegerUnion, d
=#
for x = Base.Iterators.product(fac...)
k = lcm([degree(t[1]) for t = x])
Fq = Native.FiniteField(p, k, "y", cached = false)[1]
Fq = Native.finite_field(p, k, "y", cached = false)[1]
Fq2 = residue_ring(Rx, lift(Zx, minpoly(gen(Fq))))
rt = Vector{Vector{elem_type(Fq)}}()
RT = []
Expand Down
6 changes: 3 additions & 3 deletions src/NumFieldOrd/NfOrd/MaxOrd/Polygons.jl
Original file line number Diff line number Diff line change
Expand Up @@ -307,7 +307,7 @@ Computes the residual polynomial of the side $L$ of the Newton Polygon $N$.
function residual_polynomial(N::NewtonPolygon{ZZPolyRingElem}, L::Line)
F = GF(N.p, cached = false)
Ft = polynomial_ring(F, "t", cached = false)[1]
FF = FiniteField(Ft(N.phi), "a", cached = false)[1]
FF = finite_field(Ft(N.phi), "a", cached = false)[1]
return residual_polynomial(FF, L, N.development, N.p)
end

Expand Down Expand Up @@ -407,7 +407,7 @@ function gens_overorder_polygons(O::NfOrd, p::ZZRingElem)
isone(m) && continue
fac = factor(gg)
for (g, m1) in fac
F, a = Native.FiniteField(g, "a", cached = false)
F, a = Native.finite_field(g, "a", cached = false)
phi = lift(Zx, g)
dev, quos = phi_development_with_quos(Zx(f), phi)
N = _newton_polygon(dev, p)
Expand Down Expand Up @@ -929,7 +929,7 @@ function decomposition_type_polygon(O::NfOrd, p::Union{ZZRingElem, Int})
continue
end
Nl = filter(x -> slope(x)<0, N.lines)
F, a = Native.FiniteField(g, "a", cached = false)
F, a = Native.finite_field(g, "a", cached = false)
pols = dense_poly_type(elem_type(F))[]
for ll in Nl
rp = residual_polynomial(F, ll, dev, p)
Expand Down
2 changes: 1 addition & 1 deletion src/QuadForm/Quad/NormalForm.jl
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ function _ispadic_normal_form_odd(G, p)

o = identity_matrix(QQ, 1)

F, = FiniteField(p, 1, cached = false)
F, = finite_field(p, 1, cached = false)

for i in 1:length(blocks)
if all(==(o), blocks[i])
Expand Down
4 changes: 2 additions & 2 deletions test/AlgAss/AlgAss.jl
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ end

# Restrict from F_q to F_p
Fp = GF(7)
Fq, a = FiniteField(7, 3, "a")
Fq, a = finite_field(7, 3, "a")

A = AlgAss(MatrixAlgebra(Fq, 2))
B, BtoA = Hecke.restrict_scalars(A, Fp)
Expand Down Expand Up @@ -168,7 +168,7 @@ end

@testset "Matrix Algebra" begin
Fp = GF(7)
Fq, a = FiniteField(7, 2, "a")
Fq, a = finite_field(7, 2, "a")

A = AlgAss(MatrixAlgebra(Fq, 3))
B, AtoB = Hecke._as_matrix_algebra(A)
Expand Down
4 changes: 2 additions & 2 deletions test/EllCrv/Finite.jl
Original file line number Diff line number Diff line change
Expand Up @@ -180,7 +180,7 @@
F = GF(3)
Fx, x = F["x"]
f = x^6 + 2*x^4 + x^2 + 2*x + 2
F, a = FiniteField(f)
F, a = finite_field(f)
E = EllipticCurve([a^4 + a^3 + 2*a^2 + 2*a, 2*a^5 + 2*a^3 + 2*a^2 + 1])
A, = abelian_group(E)
@test elementary_divisors(A) == [26, 26]
Expand All @@ -192,7 +192,7 @@
F = GF(101)
Fx, x = F["x"]
f = x^3 + 3*x + 99
F, a = FiniteField(f)
F, a = finite_field(f)
E = EllipticCurve([2*a^2 + 48*a + 27, 89*a^2 + 76*a + 24])
A, = abelian_group(E)
@test elementary_divisors(A) == [1031352]
Expand Down
2 changes: 1 addition & 1 deletion test/EllCrv/Isogeny.jl
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@
E = EllipticCurve(F, [0, 1, 1, 1, 1])
@test is_kernel_polynomial(E, x + 1)

F, o = FiniteField(47, 2, "o")
F, o = finite_field(47, 2, "o")
E = EllipticCurve(F, [0, o])
Fx, x = F["x"]
f = x^3 + (7*o + 11)*x^2 + (25*o + 33)*x + 25*o
Expand Down
2 changes: 1 addition & 1 deletion test/GenOrd/MaximalOrder.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ end
end

@testset "FldFin" begin
for q = [GF(17), GF(next_prime(ZZRingElem(10)^30)), FiniteField(5, 2)[1], FiniteField(next_prime(ZZRingElem(10)^25), 2, "a", cached = false)[1]]
for q = [GF(17), GF(next_prime(ZZRingElem(10)^30)), finite_field(5, 2)[1], finite_field(next_prime(ZZRingElem(10)^25), 2, "a", cached = false)[1]]
qt, t = RationalFunctionField(q, "t", cached = false)
qtx, x = polynomial_ring(qt, cached = false)
f = x^3+(t+1)^5*(x+1)+(t^2+t+1)^7
Expand Down
8 changes: 4 additions & 4 deletions test/Misc/FiniteField.jl
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ end
@testset "fqPolyRepField" begin

for p in [31, 11, 101]
F = FiniteField(p, 2)[1]
F = finite_field(p, 2)[1]
G, mG = unit_group(F)
#Test generator
g = mG(G[1])
Expand Down Expand Up @@ -127,9 +127,9 @@ end
@testset "FqPolyRepField" begin

for p in [31, 11, 101]
_ = FiniteField(ZZRingElem(p), 2, "a")[1]
_ = FiniteField(ZZRingElem(p), 2, 'a')[1]
F = FiniteField(ZZRingElem(p), 2, :a)[1]
_ = finite_field(ZZRingElem(p), 2, "a")[1]
_ = finite_field(ZZRingElem(p), 2, 'a')[1]
F = finite_field(ZZRingElem(p), 2, :a)[1]
G, mG = unit_group(F)
#Test generator
g = mG(G[1])
Expand Down
2 changes: 1 addition & 1 deletion test/Misc/Poly.jl
Original file line number Diff line number Diff line change
Expand Up @@ -130,7 +130,7 @@ end
@testset "Cyclotomic polynomials" begin
listp = Hecke.primes_up_to(50)
for i in 1:20
Fp, _ = FiniteField(rand(listp), cached=false)
Fp, _ = finite_field(rand(listp), cached=false)
Fpt, _ = polynomial_ring(Fp, "t", cached=false)
chi = @inferred cyclotomic_polynomial(rand(1:100), Fpt)
@test is_cyclotomic_polynomial(chi)
Expand Down
Loading

0 comments on commit 379ee51

Please sign in to comment.