Skip to content

Fast Det in Z (examples) #4426

Fast Det in Z (examples)

Fast Det in Z (examples) #4426

Triggered via pull request December 7, 2023 16:32
Status Success
Total duration 1h 29m 45s
Artifacts

CI.yml

on: pull_request
Matrix: test
Fit to window
Zoom out
Zoom in

Annotations

1 warning
Documentation: ../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2208 docstrings not included in the manual: set_precision! :: Tuple{Any, Type{Balls}, Int64} set_precision! :: Tuple{Type{Balls}, Int64} dim_radical :: Tuple{Hecke.QuadSpaceCls} root_of_unity :: Tuple{CalciumQQBarField, Int64} root_of_unity :: Tuple{AcbField, Int64} root_of_unity :: Union{Tuple{ComplexField, Int64}, Tuple{ComplexField, Int64, Int64}} root_of_unity :: Tuple{CalciumQQBarField, Int64, Int64} global_minimality_class :: Tuple{EllCrv{nf_elem}} dual_isogeny :: Tuple{Isogeny} isdyadic has_global_minimal_model :: Tuple{EllCrv{QQFieldElem}} FqMPolyRingElem norm_div :: Tuple{nf_elem, ZZRingElem, Int64} is_hnf :: Tuple{ZZMatrix} solve_lt :: Union{Tuple{T}, Tuple{MatElem{T}, MatElem{T}}} where T is_prime_known :: Tuple{Hecke.GenOrdIdl} is_prime_known :: Tuple{NfAbsOrdIdl} lll_gram :: Union{Tuple{ZZMatrix}, Tuple{ZZMatrix, lll_ctx}} issimple_known get_printing_mode :: Tuple{Type{FlintPadicField}} isisometric formal_differential_form :: Union{Tuple{EllCrv}, Tuple{EllCrv, Int64}} EquationOrder :: Union{Tuple{NumField{QQFieldElem}}, Tuple{NumField{QQFieldElem}, Bool}} EquationOrder :: Tuple{ZZPolyRingElem} EquationOrder :: Tuple{QQPolyRingElem} is_fundamental_discriminant :: Tuple{Union{Integer, ZZRingElem}} ZZMPolyRing kernel :: Tuple{TorQuadModuleMor} kernel :: Union{Tuple{SMat{T}}, Tuple{T}} where T<:FieldElement kernel :: Union{Tuple{GrpAbFinGenMap}, Tuple{GrpAbFinGenMap, Bool}} sqrt :: Tuple{qqbar} sqrt :: Tuple{FpRelPowerSeriesRingElem} sqrt :: Tuple{FpAbsPowerSeriesRingElem} sqrt :: Tuple{fpRelPowerSeriesRingElem} sqrt :: Tuple{fpAbsPowerSeriesRingElem} sqrt :: Tuple{ca} EvalEnv gcdx :: Union{Tuple{T}, Tuple{OrdLocElem{T}, OrdLocElem{T}}} where T<:nf_elem left_order :: Tuple{Hecke.AlgAssRelOrdIdl} left_order :: Tuple{Hecke.AlgAssAbsOrdIdl} non_pivot_cols_of_ref :: Tuple{MatrixElem} issurjective isdiagonalisable QQMatrix isdegenerate is_reduced :: Tuple{QuadBin{ZZRingElem}} psi_upper :: Union{Tuple{ZZRingElem, Int64}, Tuple{ZZRingElem, Int64, Int64}} issubgroup absolute_value :: Union{Tuple{NumFieldElem, InfPlc}, Tuple{NumFieldElem, InfPlc, Int64}} hyperelliptic_polynomials :: Union{Tuple{HypellCrv{T}}, Tuple{T}} where T QQFieldElem :: Tuple{qqbar} QQFieldElem disc_log_bs_gs :: Union{Tuple{T}, Tuple{T, T, Integer}} where T<:RingElem hypergeometric_1f1 :: Tuple{acb, acb, acb} hypergeometric_1f1 :: Union{Tuple{ComplexFieldElem, ComplexFieldElem, ComplexFieldElem}, Tuple{ComplexFieldElem, ComplexFieldElem, ComplexFieldElem, Int64}} undefined :: Tuple{CalciumField} canonical_injections :: Tuple{GrpAbFinGen} ispower_unram is_number :: Tuple{ca} eigvals :: Tuple{ComplexMat} eigvals :: Tuple{acb_mat} _direct_product :: Tuple{Symbol, Vararg{GrpAbFinGen}} quadratic_defect :: Tuple{NumFieldOrdElem, Union{NfAbsOrdIdl, Hecke.NfRelOrdIdl}} quadratic_defect :: Tuple{Any, Any} has_complement :: Tuple{TorQuadModuleMor} has_complement :: Union{Tuple{GrpAbFinGenMap}, Tuple{GrpAbFinGenMap, Bool}} points_at_infinity :: Union{Tuple{HypellCrv{T}}, Tuple{T}} where T index_of_speciality :: Tuple{Divisor} prime_decomposition :: Union{Tuple{Map, NfOrdIdl}, Tuple{Map, NfOrdIdl, NfOrd}} prime_decomposition :: Union{Tuple{NfAbsOrd{<:NumField{QQFieldElem}}, Union{Integer, ZZRingElem}}, Tuple{NfAbsOrd{<:NumField{QQFieldElem}}, Union{Integer, ZZRingElem}, Int64}, Tuple{NfAbsOrd{<:NumField{QQFieldElem}}, Union{Integer, ZZRingElem}, Int64, Int64}} absolute_norm :: Tuple{NumFieldOrdIdl} absolute_norm :: Tuple{T} where T<:NumFieldElem isgenus lll_gram_with_transform :: Union{Tuple{ZZMatrix}, Tuple{ZZMatrix, lll_ctx}} hermite_constant :: Union{Tuple{Int64}, Tuple{Int64, Any}} isconsistent roots :: Tuple{AnticNumberField, ZZPolyRingElem} roots :: Tuple{AbstractAlgebra.Generic.Poly{nf_elem}} roots :: Tuple{FlintQadicField, ZZPolyRingElem}