Fast Det in Z (examples) #4426
Triggered via pull request
December 7, 2023 16:32
Status
Success
Total duration
1h 29m 45s
Artifacts
–
CI.yml
on: pull_request
Documentation
8m 47s
Matrix: test
Annotations
1 warning
Documentation:
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2208 docstrings not included in the manual:
set_precision! :: Tuple{Any, Type{Balls}, Int64}
set_precision! :: Tuple{Type{Balls}, Int64}
dim_radical :: Tuple{Hecke.QuadSpaceCls}
root_of_unity :: Tuple{CalciumQQBarField, Int64}
root_of_unity :: Tuple{AcbField, Int64}
root_of_unity :: Union{Tuple{ComplexField, Int64}, Tuple{ComplexField, Int64, Int64}}
root_of_unity :: Tuple{CalciumQQBarField, Int64, Int64}
global_minimality_class :: Tuple{EllCrv{nf_elem}}
dual_isogeny :: Tuple{Isogeny}
isdyadic
has_global_minimal_model :: Tuple{EllCrv{QQFieldElem}}
FqMPolyRingElem
norm_div :: Tuple{nf_elem, ZZRingElem, Int64}
is_hnf :: Tuple{ZZMatrix}
solve_lt :: Union{Tuple{T}, Tuple{MatElem{T}, MatElem{T}}} where T
is_prime_known :: Tuple{Hecke.GenOrdIdl}
is_prime_known :: Tuple{NfAbsOrdIdl}
lll_gram :: Union{Tuple{ZZMatrix}, Tuple{ZZMatrix, lll_ctx}}
issimple_known
get_printing_mode :: Tuple{Type{FlintPadicField}}
isisometric
formal_differential_form :: Union{Tuple{EllCrv}, Tuple{EllCrv, Int64}}
EquationOrder :: Union{Tuple{NumField{QQFieldElem}}, Tuple{NumField{QQFieldElem}, Bool}}
EquationOrder :: Tuple{ZZPolyRingElem}
EquationOrder :: Tuple{QQPolyRingElem}
is_fundamental_discriminant :: Tuple{Union{Integer, ZZRingElem}}
ZZMPolyRing
kernel :: Tuple{TorQuadModuleMor}
kernel :: Union{Tuple{SMat{T}}, Tuple{T}} where T<:FieldElement
kernel :: Union{Tuple{GrpAbFinGenMap}, Tuple{GrpAbFinGenMap, Bool}}
sqrt :: Tuple{qqbar}
sqrt :: Tuple{FpRelPowerSeriesRingElem}
sqrt :: Tuple{FpAbsPowerSeriesRingElem}
sqrt :: Tuple{fpRelPowerSeriesRingElem}
sqrt :: Tuple{fpAbsPowerSeriesRingElem}
sqrt :: Tuple{ca}
EvalEnv
gcdx :: Union{Tuple{T}, Tuple{OrdLocElem{T}, OrdLocElem{T}}} where T<:nf_elem
left_order :: Tuple{Hecke.AlgAssRelOrdIdl}
left_order :: Tuple{Hecke.AlgAssAbsOrdIdl}
non_pivot_cols_of_ref :: Tuple{MatrixElem}
issurjective
isdiagonalisable
QQMatrix
isdegenerate
is_reduced :: Tuple{QuadBin{ZZRingElem}}
psi_upper :: Union{Tuple{ZZRingElem, Int64}, Tuple{ZZRingElem, Int64, Int64}}
issubgroup
absolute_value :: Union{Tuple{NumFieldElem, InfPlc}, Tuple{NumFieldElem, InfPlc, Int64}}
hyperelliptic_polynomials :: Union{Tuple{HypellCrv{T}}, Tuple{T}} where T
QQFieldElem :: Tuple{qqbar}
QQFieldElem
disc_log_bs_gs :: Union{Tuple{T}, Tuple{T, T, Integer}} where T<:RingElem
hypergeometric_1f1 :: Tuple{acb, acb, acb}
hypergeometric_1f1 :: Union{Tuple{ComplexFieldElem, ComplexFieldElem, ComplexFieldElem}, Tuple{ComplexFieldElem, ComplexFieldElem, ComplexFieldElem, Int64}}
undefined :: Tuple{CalciumField}
canonical_injections :: Tuple{GrpAbFinGen}
ispower_unram
is_number :: Tuple{ca}
eigvals :: Tuple{ComplexMat}
eigvals :: Tuple{acb_mat}
_direct_product :: Tuple{Symbol, Vararg{GrpAbFinGen}}
quadratic_defect :: Tuple{NumFieldOrdElem, Union{NfAbsOrdIdl, Hecke.NfRelOrdIdl}}
quadratic_defect :: Tuple{Any, Any}
has_complement :: Tuple{TorQuadModuleMor}
has_complement :: Union{Tuple{GrpAbFinGenMap}, Tuple{GrpAbFinGenMap, Bool}}
points_at_infinity :: Union{Tuple{HypellCrv{T}}, Tuple{T}} where T
index_of_speciality :: Tuple{Divisor}
prime_decomposition :: Union{Tuple{Map, NfOrdIdl}, Tuple{Map, NfOrdIdl, NfOrd}}
prime_decomposition :: Union{Tuple{NfAbsOrd{<:NumField{QQFieldElem}}, Union{Integer, ZZRingElem}}, Tuple{NfAbsOrd{<:NumField{QQFieldElem}}, Union{Integer, ZZRingElem}, Int64}, Tuple{NfAbsOrd{<:NumField{QQFieldElem}}, Union{Integer, ZZRingElem}, Int64, Int64}}
absolute_norm :: Tuple{NumFieldOrdIdl}
absolute_norm :: Tuple{T} where T<:NumFieldElem
isgenus
lll_gram_with_transform :: Union{Tuple{ZZMatrix}, Tuple{ZZMatrix, lll_ctx}}
hermite_constant :: Union{Tuple{Int64}, Tuple{Int64, Any}}
isconsistent
roots :: Tuple{AnticNumberField, ZZPolyRingElem}
roots :: Tuple{AbstractAlgebra.Generic.Poly{nf_elem}}
roots :: Tuple{FlintQadicField, ZZPolyRingElem}
|