Update to latest AA, Nemo #4422
Triggered via pull request
December 7, 2023 08:23
Status
Success
Total duration
1h 20m 46s
Artifacts
–
CI.yml
on: pull_request
Documentation
8m 38s
Matrix: test
Annotations
1 warning
Documentation:
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2208 docstrings not included in the manual:
index :: Tuple{NfAbsOrd}
index :: Tuple{ZZLat, ZZLat}
homogeneous_equation :: Tuple{HypellCrv}
fixed_field :: Union{Tuple{T}, Tuple{SimpleNumField, T}} where T<:Hecke.NumFieldMor
fixed_field :: Tuple{ClassField, GrpAbFinGen}
isstable
isisometric_with_isometry
formal_log :: Union{Tuple{EllCrv}, Tuple{EllCrv, Int64}}
eta_qexp :: Tuple{FlintPuiseuxSeriesElem{ZZLaurentSeriesRingElem}}
eta_qexp :: Tuple{Int64, Int64, ZZPolyRingElem}
eta_qexp :: Tuple{ZZLaurentSeriesRingElem}
CPS_height_bounds :: Union{Tuple{EllCrv{T}}, Tuple{T}} where T<:Union{QQFieldElem, nf_elem}
isgorenstein
gamma_regularized :: Tuple{arb, arb}
gamma_regularized :: Tuple{acb, acb}
gamma_regularized :: Union{Tuple{ComplexFieldElem, ComplexFieldElem}, Tuple{ComplexFieldElem, ComplexFieldElem, Int64}}
gamma_regularized :: Union{Tuple{RealFieldElem, RealFieldElem}, Tuple{RealFieldElem, RealFieldElem, Int64}}
zero_map :: Tuple{GrpAbFinGen}
elem_order_bsgs :: Union{Tuple{EllCrvPt{T}}, Tuple{T}} where T<:FinFieldElem
signature_pair :: Tuple{ZZGenus}
is_number :: Tuple{ca}
_two_adic_symbol :: Tuple{ZZMatrix, Int64}
NfAbsOrdIdl
different_divisor :: Tuple{AbstractAlgebra.Generic.FunctionField}
frobenius :: Union{Tuple{FqPolyRepFieldElem}, Tuple{FqPolyRepFieldElem, Any}}
frobenius :: Union{Tuple{qadic}, Tuple{qadic, Int64}}
frobenius :: Union{Tuple{FqFieldElem}, Tuple{FqFieldElem, Any}}
_isnormal :: Tuple{Vector{GrpGenElem}}
_isnormal :: Tuple{Vector{GrpGenElem}, GrpGenElem}
isogeny_from_kernel_factored :: Tuple{EllCrv, RingElem}
fqPolyRepPolyRingElem
neighbours :: Union{Tuple{HermLat, Any}, Tuple{HermLat, Any, Any}}
atkin_modular_polynomial
minimal_model :: Tuple{EllCrv{QQFieldElem}}
minimal_model :: Tuple{EllCrv, Any}
minimal_model :: Tuple{EllCrv{QQFieldElem}, Int64}
minimal_model :: Tuple{EllCrv{nf_elem}}
tr :: Tuple{NumFieldElem, NumField}
tr :: Union{Tuple{Hecke.AbsAlgAssElem{T}}, Tuple{T}} where T
tr :: Tuple{Hecke.AlgAssAbsOrdElem}
tr :: Tuple{Hecke.AlgAssRelOrdElem}
minimal_subgroups :: Union{Tuple{GrpAbFinGen}, Tuple{GrpAbFinGen, Bool}}
isdivisible
erfc :: Tuple{acb}
erfc :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
erfc :: Tuple{ca}
fpMatrix
theta_qexp :: Tuple{Int64, Int64, ZZPolyRingElem}
ball :: Tuple{arb, arb}
ball :: Tuple{RealFieldElem, RealFieldElem}
reduce_mod_powers :: Tuple{nf_elem, Int64, Vector{NfOrdIdl}}
locally_free_class_group :: Union{Tuple{Hecke.AlgAssAbsOrd}, Tuple{T}, Tuple{Hecke.AlgAssAbsOrd, Symbol}, Tuple{Hecke.AlgAssAbsOrd, Symbol, Type{Val{T}}}} where T
Hensel_factorization :: Union{Tuple{AbstractAlgebra.Generic.Poly{T}}, Tuple{T}} where T<:Union{padic, qadic, Hecke.LocalFieldElem}
_trace_diag_mod_8 :: Tuple{ZZMatrix}
next_minimal :: Tuple{QQFieldElem}
isdegenerate
MaximalOrder :: Union{Tuple{NfAbsOrd{S, T}}, Tuple{T}, Tuple{S}} where {S, T}
MaximalOrder :: Union{Tuple{Hecke.AbsAlgAss{S}}, Tuple{S}} where S
MaximalOrder :: Union{Tuple{Hecke.AlgAssAbsOrd{S, T}}, Tuple{S}, Tuple{T}} where {T, S}
stable_subgroups :: Union{Tuple{T}, Tuple{GrpAbFinGen, Vector{T}}} where T<:(Map{GrpAbFinGen, GrpAbFinGen})
fqPolyRepPolyRing
ZZMatrixSpace
Amodule :: Tuple{Hecke.AbsAlgAss, Vector{<:MatElem}}
Amodule :: Tuple{Vector{<:MatElem}}
isequation_order
isdiagonalisable
is_prime_power :: Tuple{Union{Integer, ZZRingElem}}
isradical_extension
frobenius_equation :: Tuple{Hecke.LocalFieldElem, Union{FlintPadicField, FlintQadicField, Hecke.LocalField}}
frobenius_equation :: Tuple{Int64, FinFieldElem}
iscanonical
is_torsion_unit :: Union{Tuple{NfOrdElem}, Tuple{NfOrdElem, Bool}}
is_torsion_unit :: Union{Tuple{nf_elem}, Tuple{nf_elem, Bool}}
is_totally_isotropic :: Tuple{TorQuadModule}
modulus :: Union{Tuple{fqPolyRepField}, Tuple{fqPolyRepField, Union{Char, AbstractString, Symbol}}}
modulus ::
|