Fix some mathmode in docu #4253
Annotations
1 warning
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2350 docstrings not included in the manual:
bernoulli :: Tuple{Int64, ArbField}
bernoulli :: Union{Tuple{Int64, RealField}, Tuple{Int64, RealField, Int64}}
bernoulli :: Tuple{Int64}
divisible :: Tuple{ZZRingElem, ZZRingElem}
divisible :: Tuple{ZZRingElem, Int64}
naive_height :: Union{Tuple{EllCrvPt{nf_elem}}, Tuple{EllCrvPt{nf_elem}, Int64}}
naive_height :: Union{Tuple{EllCrvPt{QQFieldElem}}, Tuple{EllCrvPt{QQFieldElem}, Int64}}
_rational_canonical_form_setup :: Union{Tuple{MatElem{T}}, Tuple{T}} where T<:FieldElem
norm :: Tuple{PolyRingElem{nf_elem}}
norm :: Tuple{Hecke.NfAbsOrdFracIdl}
norm :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrdIdl{S, T, U}, Hecke.AlgAssRelOrd{S, T, U}}} where {S, T, U}
norm :: Union{Tuple{T}, Tuple{T, NfOrdIdl}} where T<:(Map{AnticNumberField, AnticNumberField})
norm :: Union{Tuple{T}, Tuple{T, nf_elem}} where T<:(Map{AnticNumberField, AnticNumberField})
norm :: Tuple{Hecke.AlgAssAbsOrdIdl}
norm :: Union{Tuple{Hecke.NfRelOrdFracIdl{S, U, V}}, Tuple{V}, Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.NfRelOrdFracIdl{S, U, V}, Type{Val{T}}}} where {S, T, U, V}
norm :: Tuple{NfAbsOrdIdl}
norm :: Union{Tuple{Hecke.NfRelOrdIdl{T, S, U}}, Tuple{U}, Tuple{S}, Tuple{T}} where {T, S, U}
norm :: Tuple{Hecke.AbsAlgAssElem{QQFieldElem}}
norm :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssAbsOrdIdl{S, T}, Hecke.AlgAssAbsOrd{S, T}}} where {S, T}
norm :: Tuple{Hecke.GenOrdIdl}
norm :: Tuple{GenOrdFracIdl}
norm :: Tuple{PolyRingElem{<:NumFieldElem}}
norm :: Tuple{Hecke.AlgAssRelOrdIdl}
AbstractSpaceRes
EmbeddedNumFieldElem
ZZModMPolyRing
iszero_entry
representation_matrix :: Union{Tuple{T}, Tuple{S}, Tuple{NfAbsOrdElem{S, T}, S}} where {S, T}
representation_matrix :: Union{Tuple{AlgGrpElem}, Tuple{AlgGrpElem, Symbol}}
representation_matrix :: Union{Tuple{Hecke.AlgAssRelOrdElem}, Tuple{Hecke.AlgAssRelOrdElem, Symbol}}
representation_matrix :: Union{Tuple{Hecke.AlgAssAbsOrdElem}, Tuple{Hecke.AlgAssAbsOrdElem, Symbol}}
root :: Tuple{Hecke.MPolyFact.RootCtx, Int64, Int64}
reduced_charpoly :: Tuple{Hecke.AbsAlgAssElem}
kernel_basis :: Union{Tuple{MatElem{T}}, Tuple{T}, Tuple{MatElem{T}, Symbol}} where T<:FieldElem
_hensel_qf_modular_odd :: Union{Tuple{T}, Tuple{T, T, T, Any, Any}} where T<:Union{ZZModMatrix, zzModMatrix}
primsplit! :: Union{Tuple{PolyRingElem{T}}, Tuple{T}, Tuple{S}} where {S<:Union{Integer, ZZRingElem}, T<:ResElem{S}}
weierstrass_p_prime :: Tuple{acb, acb}
weierstrass_p_prime :: Union{Tuple{ComplexFieldElem, ComplexFieldElem}, Tuple{ComplexFieldElem, ComplexFieldElem, Int64}}
_isglobal_genus :: Tuple{ZZGenus}
_isnormal :: Tuple{Vector{GrpGenElem}, GrpGenElem}
_isnormal :: Tuple{Vector{GrpGenElem}}
isisometric
iszero_mod_hnf!
_iseven :: Tuple{MatElem}
contract :: Tuple{Hecke.AlgAssAbsOrdIdl, Hecke.AlgAssAbsOrd}
>> :: Tuple{QQFieldElem, Int64}
>> :: Tuple{ZZRingElem, Int64}
>> :: Tuple{ZZMatrix, Int64}
absolute_representation_matrix :: Tuple{Hecke.NfRelElem}
ispower_unram
fq_mat
relative_residue_field :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.NfRelOrd{S, T, U}, Hecke.NfRelOrdIdl{S, T, U}}} where {S, T, U}
islocally_isomorphic_with_isomophism
coefficients :: Tuple{Hecke.AbsAlgAssElem}
coefficients :: Tuple{AlgMatElem}
isfixed_point_free
isundefined
primorial :: Tuple{ZZRingElem}
primorial :: Tuple{Int64}
EllCrv :: Union{Tuple{Vector{S}}, Tuple{T}, Tuple{S}} where {S, T}
data :: Tuple{TorQuadModuleElem}
lattice_with_local_conditions :: Tuple{Hecke.AlgAssAbsOrd, Vector{<:Union{Integer, ZZRingElem}}, Vector{<:Hecke.AlgAssAbsOrdIdl}}
semi_global_minimal_model :: Tuple{EllCrv{nf_elem}}
isprime_nice
EvalEnv
subfield :: Tuple{NumField, Vector{<:NumFieldElem}}
is_root_of_unity :: Tuple{qqbar}
torsion_structure :: Tuple{EllCrv{nf_elem}}
torsion_structure :: Tuple{EllCrv{QQFieldElem}}
chebyshev_t :: Tuple{Int64, a
|
The logs for this run have expired and are no longer available.
Loading