Support GAP.jl 0.10 #4242
Annotations
1 error and 1 warning
|
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2350 docstrings not included in the manual:
set_verbose_level
isleaf
root_sublattice :: Tuple{ZZLat}
_improper_spinor_generators :: Tuple{ZZGenus}
weil_pairing :: Union{Tuple{T}, Tuple{EllCrvPt{T}, EllCrvPt{T}, Int64}} where T
FqPolyRepMatrixSpace
gamma_lower :: Union{Tuple{ComplexFieldElem, ComplexFieldElem}, Tuple{ComplexFieldElem, ComplexFieldElem, Int64}}
gamma_lower :: Union{Tuple{RealFieldElem, RealFieldElem}, Tuple{RealFieldElem, RealFieldElem, Int64}}
gamma_lower :: Tuple{arb, arb}
gamma_lower :: Tuple{acb, acb}
_isnormal :: Tuple{Vector{GrpGenElem}, GrpGenElem}
_isnormal :: Tuple{Vector{GrpGenElem}}
gfp_rel_series
lll_gram_indef_with_transform :: Tuple{MatElem{ZZRingElem}}
is_zero :: Tuple{Divisor}
MSet
jacobi_theta :: Union{Tuple{ComplexFieldElem, ComplexFieldElem}, Tuple{ComplexFieldElem, ComplexFieldElem, Int64}}
jacobi_theta :: Tuple{acb, acb}
index_of_speciality :: Tuple{Divisor}
is_equal_abs :: Tuple{qqbar, qqbar}
intersect_prime :: Union{Tuple{Map, NfOrdIdl}, Tuple{Map, NfOrdIdl, NfOrd}}
sinhcosh :: Tuple{acb}
sinhcosh :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
bessel_k :: Union{Tuple{ComplexFieldElem, ComplexFieldElem}, Tuple{ComplexFieldElem, ComplexFieldElem, Int64}}
bessel_k :: Tuple{acb, acb}
ispower_trager
is_integral :: Tuple{Hecke.AbsAlgAssElem}
hnf_modular :: Union{Tuple{T}, Tuple{MatElem{T}, T}, Tuple{MatElem{T}, T, Bool}} where T
is_prime_power_with_data :: Tuple{Union{Integer, ZZRingElem}}
tidy_model :: Tuple{EllCrv{QQFieldElem}}
continued_fraction :: Tuple{arb}
FmpzModAbsSeriesRing
zzModPolyRingElem
contains_nonpositive :: Tuple{RealFieldElem}
contains_nonpositive :: Tuple{arb}
trace_lattice_with_isometry :: Union{Tuple{AbstractLat{T}}, Tuple{T}} where T
trace_lattice_with_isometry :: Tuple{HermLat, AbstractSpaceRes}
FqNmodRelSeriesRing
id_hom :: Tuple{TorQuadModule}
fq_nmod_mpoly
QQMPolyRingElem
cyclotomic_field_as_cm_extension :: Tuple{Int64}
lattice_with_local_conditions :: Tuple{Hecke.AlgAssAbsOrd, Vector{<:Union{Integer, ZZRingElem}}, Vector{<:Hecke.AlgAssAbsOrdIdl}}
GFPFmpzPolyRing
is_invertible :: Tuple{NfAbsOrdIdl}
is_invertible :: Tuple{Hecke.AbsAlgAssElem}
midpoint :: Tuple{RealFieldElem}
midpoint :: Tuple{arb}
height_pairing :: Union{Tuple{T}, Tuple{EllCrvPt{T}, EllCrvPt{T}}, Tuple{EllCrvPt{T}, EllCrvPt{T}, Int64}} where T<:Union{QQFieldElem, nf_elem}
solve_lt :: Union{Tuple{T}, Tuple{MatElem{T}, MatElem{T}}} where T
formal_x :: Union{Tuple{EllCrv}, Tuple{EllCrv, Int64}}
ismaximal_integral
isabelian2
fmpq_rel_series
isnonzero
free_resolution :: Tuple{GrpAbFinGen}
chebyshev_u2 :: Tuple{Int64, arb}
chebyshev_u2 :: Union{Tuple{Int64, RealFieldElem}, Tuple{Int64, RealFieldElem, Int64}}
direct_product :: Union{Tuple{Vector{T}}, Tuple{T}} where T<:AbstractLat
direct_product :: Union{Tuple{Vector{<:AlgAss{T}}}, Tuple{T}} where T
direct_product :: Tuple{Vector{AnticNumberField}}
direct_product :: Union{Tuple{Vector{T}}, Tuple{T}} where T<:AbstractSpace
iterated_neighbours :: Tuple{HermLat, Any}
van_hoeij :: Tuple{PolyRingElem{nf_elem}, NfOrdIdl}
saturate :: Tuple{AbstractLat, AbstractLat}
quotient :: Tuple{GrpGen, GrpGen, GrpGenToGrpGenMor}
tates_algorithm_global :: Tuple{EllCrv{QQFieldElem}}
isisometric
is_nonzero :: Tuple{RealFieldElem}
is_nonzero :: Tuple{arb}
rand! :: Union{Tuple{T}, Tuple{T, Vector{T}, AbstractUnitRange, Int64}} where T<:NumFieldElem
rand! :: Tuple{AbstractAlgebra.Generic.Mat{nf_elem}, AbstractArray}
rand! :: Union{Tuple{T}, Tuple{T, Vector{T}, AbstractUnitRange}} where T<:NumFieldElem
rand! :: Tuple{nf_elem, AbstractArray}
closure :: Union{Tuple{T}, Tuple{T, Vector{T}}} where T<:MatElem
dedekind_eta :: Tuple{acb}
dedekind_eta :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
is_isogenous :: Union{Tuple{T}, Tuple{EllCrv{T}
|
The logs for this run have expired and are no longer available.
Loading