Skip to content

Complement on multi-sets and sub-set iterators #4238

Complement on multi-sets and sub-set iterators

Complement on multi-sets and sub-set iterators #4238

Triggered via pull request October 10, 2023 15:54
Status Failure
Total duration 1h 59m 8s
Artifacts
This run and associated checks have been archived and are scheduled for deletion. Learn more about checks retention

CI.yml

on: pull_request
Matrix: test
Fit to window
Zoom out
Zoom in

Annotations

7 errors and 1 warning
test (~1.10.0-0, ubuntu-latest)
The runner has received a shutdown signal. This can happen when the runner service is stopped, or a manually started runner is canceled.
test (~1.10.0-0, ubuntu-latest)
The operation was canceled.
Documentation: ../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L32
no docs found for 'multiplicity(::MSet{T}, ::T) where T' in `@docs` block in src/features/mset.md:68-71 ```@docs multiplicities(::MSet) multiplicity(::MSet{T}, ::T) where T ```
Documentation
Process completed with exit code 1.
test (nightly, ubuntu-latest)
The runner has received a shutdown signal. This can happen when the runner service is stopped, or a manually started runner is canceled.
test (nightly, ubuntu-latest)
Process completed with exit code 143.
test (1.9, macOS-latest)
Process completed with exit code 1.
Documentation: ../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2348 docstrings not included in the manual: HyperellipticCurve :: Union{Tuple{PolyRingElem{T}}, Tuple{T}} where T<:FieldElem HyperellipticCurve :: Union{Tuple{T}, Tuple{PolyRingElem{T}, PolyRingElem{T}}} where T<:FieldElem riemann_roch_space :: Tuple{Divisor} set_precision! :: Tuple{Any, Type{Balls}, Int64} set_precision! :: Tuple{Type{Balls}, Int64} saturate :: Tuple{AbstractLat, AbstractLat} endomorphism_ring :: Tuple{Hecke.EndAlgMap, Hecke.ModAlgAssLat} has_princ_gen :: Tuple{Hecke.GenOrdIdl} has_princ_gen :: Tuple{NfAbsOrdIdl} _direct_product :: Tuple{Symbol, Vararg{GrpAbFinGen}} preimage_map :: Union{Tuple{T}, Tuple{T, T}} where T<:FinField preimage_map :: Tuple{Nemo.FinFieldPreimage} preimage_map :: Tuple{Nemo.FinFieldMorphism} divexact_left :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssAbsOrdIdl{S, T}, Hecke.AlgAssAbsOrdIdl{S, T}}} where {S, T} divexact_left :: Tuple{Hecke.AbsAlgAssElem, Hecke.AbsAlgAssElem} divexact_left :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrdIdl{S, T, U}, Hecke.AlgAssRelOrdIdl{S, T, U}}} where {S, T, U} divexact_left :: Union{Tuple{T}, Tuple{T, T}, Tuple{T, T, Bool}} where T<:Union{Hecke.AlgAssAbsOrdElem, Hecke.AlgAssRelOrdElem} SRow norm :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssAbsOrdIdl{S, T}, Hecke.AlgAssAbsOrd{S, T}}} where {S, T} norm :: Tuple{PolyRingElem{nf_elem}} norm :: Tuple{GenOrdFracIdl} norm :: Tuple{NfAbsOrdIdl} norm :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrdIdl{S, T, U}, Hecke.AlgAssRelOrd{S, T, U}}} where {S, T, U} norm :: Union{Tuple{Hecke.NfRelOrdFracIdl{S, U, V}}, Tuple{V}, Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.NfRelOrdFracIdl{S, U, V}, Type{Val{T}}}} where {S, T, U, V} norm :: Tuple{Hecke.AlgAssRelOrdIdl} norm :: Union{Tuple{T}, Tuple{T, nf_elem}} where T<:(Map{AnticNumberField, AnticNumberField}) norm :: Union{Tuple{T}, Tuple{T, NfOrdIdl}} where T<:(Map{AnticNumberField, AnticNumberField}) norm :: Tuple{Hecke.GenOrdIdl} norm :: Tuple{Hecke.AbsAlgAssElem{QQFieldElem}} norm :: Union{Tuple{Hecke.NfRelOrdIdl{T, S, U}}, Tuple{U}, Tuple{S}, Tuple{T}} where {T, S, U} norm :: Tuple{Hecke.AlgAssAbsOrdIdl} norm :: Tuple{PolyRingElem{<:NumFieldElem}} norm :: Tuple{Hecke.NfAbsOrdFracIdl} ispositive_definite FmpqMatSpace cansolve :: Tuple{ZZMatrix, ZZMatrix} identity_map :: Tuple{TorQuadModule} identity_map :: Tuple{EllCrv} lift :: Tuple{Hecke.MPolyFact.RootCtxSingle} elementary_divisors :: Union{Tuple{MatElem{T}}, Tuple{T}} where T elementary_divisors :: Tuple{TorQuadModule} reduced_charpoly :: Tuple{Hecke.AbsAlgAssElem} closure :: Union{Tuple{T}, Tuple{T, Vector{T}}} where T<:MatElem add_verbose_scope is_less_real :: Tuple{qqbar, qqbar} dimension :: Tuple{Divisor} conjugates :: Union{Tuple{nf_elem, qAdicConj}, Tuple{nf_elem, qAdicConj, Int64}} conjugates :: Union{Tuple{NumFieldElem}, Tuple{NumFieldElem, Int64}, Tuple{NumFieldElem, Int64, Any}} formal_differential_form :: Union{Tuple{EllCrv}, Tuple{EllCrv, Int64}} reduction_type :: Tuple{EllCrv{QQFieldElem}, Any} reduction_type :: Tuple{EllCrv{nf_elem}, NfOrdIdl} maximal_p_subfield :: Tuple{ClassField, Int64} fq_default_mat ZZPolyRing lower_bound :: Tuple{arb, Type{ZZRingElem}} FqMPolyRing FpPolyRingElem is_gen :: Tuple{nf_elem} is_gen :: Tuple{FlintPuiseuxSeriesElem} is_gen :: Tuple{FqFieldElem} is_gen :: Tuple{FqPolyRepFieldElem} is_gen :: Tuple{ZZLaurentSeriesRingElem} iseichler AbstractSpaceRes root :: Tuple{Hecke.MPolyFact.RootCtx, Int64, Int64} kummer_extension :: Tuple{Int64, Vector{FacElem{nf_elem, AnticNumberField}}} modular_weber_f2 :: Tuple{acb} modular_weber_f2 :: Tuple{ComplexFieldElem} _species_list :: Tuple{ZZLocalGenus} torsion_bound :: Tuple{EllCrv{nf_elem}, Int64} discriminant :: Union{Tuple{T}, Tuple{T, NfOrd}} where T<:Map discriminant :: Tuple{ZZLat} discriminant :: Union{T