Complement on multi-sets and sub-set iterators #4236
Triggered via pull request
October 10, 2023 10:19
Status
Cancelled
Total duration
5h 1m 12s
Artifacts
–
This run and associated checks have been archived and are scheduled for deletion.
Learn more about checks retention
CI.yml
on: pull_request
Documentation
12m 0s
Matrix: test
Annotations
3 errors and 1 warning
test (nightly, ubuntu-latest)
The runner has received a shutdown signal. This can happen when the runner service is stopped, or a manually started runner is canceled.
|
test (nightly, ubuntu-latest)
Process completed with exit code 143.
|
test (~1.10.0-0, ubuntu-latest)
The operation was canceled.
|
Documentation:
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2320 docstrings not included in the manual:
numpart :: Tuple{ZZRingElem, ArbField}
numpart :: Union{Tuple{Int64, RealField}, Tuple{Int64, RealField, Int64}}
numpart :: Union{Tuple{ZZRingElem, RealField}, Tuple{ZZRingElem, RealField, Int64}}
numpart :: Tuple{Int64, ArbField}
add_scaled_row! :: Union{Tuple{T}, Tuple{SRow{T}, SRow{T}, T}} where T
Amodule :: Tuple{Vector{<:MatElem}}
Amodule :: Tuple{Hecke.AbsAlgAss, Vector{<:MatElem}}
root :: Tuple{arb, Int64}
root :: Tuple{qqbar, Int64}
root :: Tuple{ZZRingElem, Int64}
root :: Tuple{QQFieldElem, Int64}
root :: Union{Tuple{RealFieldElem, Int64}, Tuple{RealFieldElem, Int64, Int64}}
isqrt :: Tuple{ZZRingElem}
finite_split :: Tuple{Divisor}
issimultaneous_diagonalizable
invmod :: Tuple{ZZRingElem, ZZRingElem}
// :: Union{Tuple{S}, Tuple{EllCrvPt, S}} where S<:Union{Integer, ZZRingElem}
// :: Tuple{FunFldDiff, FunFldDiff}
prime_field :: Tuple{FqField}
eisenstein_g :: Tuple{Int64, acb}
eisenstein_g :: Union{Tuple{Int64, ComplexFieldElem}, Tuple{Int64, ComplexFieldElem, Int64}}
rand_bits_prime :: Union{Tuple{ZZRing, Int64}, Tuple{ZZRing, Int64, Bool}}
eta_qexp :: Tuple{Int64, Int64, ZZPolyRingElem}
eta_qexp :: Tuple{FlintPuiseuxSeriesElem{ZZLaurentSeriesRingElem}}
eta_qexp :: Tuple{ZZLaurentSeriesRingElem}
csgn :: Tuple{ca}
csgn :: Tuple{qqbar}
elementary_divisors :: Tuple{TorQuadModule}
elementary_divisors :: Union{Tuple{MatElem{T}}, Tuple{T}} where T
zero_divisor :: Tuple{Divisor}
zero_divisor :: Tuple{AbstractAlgebra.Generic.FunctionFieldElem}
iscm_field_easy
kernel_basis :: Union{Tuple{MatElem{T}}, Tuple{T}, Tuple{MatElem{T}, Symbol}} where T<:FieldElem
isradical_extension
maximal_eichler_quotient_with_projection :: Tuple{Hecke.AbsAlgAss}
bessel_j :: Union{Tuple{ComplexFieldElem, ComplexFieldElem}, Tuple{ComplexFieldElem, ComplexFieldElem, Int64}}
bessel_j :: Tuple{acb, acb}
iscentral
regular_matrix_algebra :: Tuple{Union{AlgAss, AlgGrp}}
issubgroup
isomorphism_data :: Tuple{Hecke.EllCrvIso}
faltings_height :: Union{Tuple{EllCrv{QQFieldElem}}, Tuple{EllCrv{QQFieldElem}, Int64}}
FqNmodPolyRing
modular_lift :: Tuple{Vector{fqPolyRepPolyRingElem}, Hecke.modular_env}
modular_lift :: Tuple{Vector{fqPolyRepFieldElem}, Hecke.modular_env}
modular_lift :: Tuple{Vector{fqPolyRepMatrix}, Hecke.modular_env}
popcount :: Tuple{ZZRingElem}
is_positive_definite :: Tuple{ZZMatrix}
torsion_bound :: Tuple{EllCrv{nf_elem}, Int64}
homogeneous_equation :: Tuple{HypellCrv}
is_unimodular :: Tuple{ZZGenus}
is_unimodular :: Tuple{ZZLat}
ZZModMatrix
is_positive :: Tuple{arb}
is_positive :: Tuple{RealFieldElem}
continued_fraction :: Tuple{arb}
natural_lattice :: Tuple{Hecke.AlgAssAbsOrd{<:AlgMat{QQFieldElem, QQMatrix}}}
is_squarefree :: Tuple{Union{Int64, ZZRingElem}}
nmod_rel_series
weierstrass_p :: Union{Tuple{ComplexFieldElem, ComplexFieldElem}, Tuple{ComplexFieldElem, ComplexFieldElem, Int64}}
weierstrass_p :: Tuple{acb, acb}
airy_bi_prime :: Tuple{arb}
airy_bi_prime :: Union{Tuple{RealFieldElem}, Tuple{RealFieldElem, Int64}}
airy_bi_prime :: Tuple{acb}
airy_bi_prime :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
- :: Tuple{Hecke.LocalQuadSpaceCls, Hecke.LocalQuadSpaceCls}
- :: Tuple{AlgMatElem}
- :: Tuple{TorQuadModuleMor}
- :: Tuple{TorQuadModuleMor, TorQuadModuleMor}
isequal_abs_imag
isunknown
berlekamp_massey :: Union{Tuple{Y}, Tuple{Vector{Y}, Int64}} where Y<:FieldElem
local_factor :: Tuple{HermLat, Any}
tates_algorithm_local :: Tuple{EllCrv{QQFieldElem}, Any}
tates_algorithm_local :: Tuple{Any, Any}
sin_integral :: Tuple{acb}
sin_integral :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
is_conjugate :: Tuple{ZZMatrix, ZZMatrix}
isdiagonal
lll_basis :: Union{Tuple{NfOrdIdl}, Tuple{NfOrdIdl, ZZMatrix}}
lll_basis :: Tuple{NfAbsOrd}
signat
|